Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
sph_harm_y(n, m, theta, phi, *, diff_n=0)
Spherical harmonics. They are defined as
.. math::
Y_n^m(\theta,\phi) = \sqrt{\frac{2 n + 1}{4 \pi} \frac{(n - m)!}{(n + m)!}}
P_n^m(\cos(\theta)) e^{i m \phi}
where :math:`P_n^m` are the (unnormalized) associated Legendre polynomials.
Parameters
----------
n : ArrayLike[int]
Degree of the harmonic. Must have ``n >= 0``. This is
often denoted by ``l`` (lower case L) in descriptions of
spherical harmonics.
m : ArrayLike[int]
Order of the harmonic.
theta : ArrayLike[float]
Polar (colatitudinal) coordinate; must be in ``[0, pi]``.
phi : ArrayLike[float]
Azimuthal (longitudinal) coordinate; must be in ``[0, 2*pi]``.
diff_n : Optional[int]
A non-negative integer. Compute and return all derivatives up
to order ``diff_n``. Default is 0.
Returns
-------
y : ndarray[complex] or tuple[ndarray[complex]]
Spherical harmonics with ``diff_n`` derivatives.
Notes
-----
There are different conventions for the meanings of the input
arguments ``theta`` and ``phi``. In SciPy ``theta`` is the
polar angle and ``phi`` is the azimuthal angle. It is common to
see the opposite convention, that is, ``theta`` as the azimuthal angle
and ``phi`` as the polar angle.
Note that SciPy's spherical harmonics include the Condon-Shortley
phase [2]_ because it is part of `sph_legendre_p`.
With SciPy's conventions, the first several spherical harmonics
are
.. math::
Y_0^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{1}{\pi}} \\
Y_1^{-1}(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{2\pi}}
e^{-i\phi} \sin(\theta) \\
Y_1^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{\pi}}
\cos(\theta) \\
Y_1^1(\theta, \phi) &= -\frac{1}{2} \sqrt{\frac{3}{2\pi}}
e^{i\phi} \sin(\theta).
References
----------
.. [1] Digital Library of Mathematical Functions, 14.30.
https://dlmf.nist.gov/14.30
.. [2] https://en.wikipedia.org/wiki/Spherical_harmonics#Condon.E2.80.93Shortley_phase
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :