Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.special »

Fonction jnp_zeros - module scipy.special

Signature de la fonction jnp_zeros

def jnp_zeros(n, nt) 

Description

jnp_zeros.__doc__

Compute zeros of integer-order Bessel function derivatives Jn'.

    Compute `nt` zeros of the functions :math:`J_n'(x)` on the
    interval :math:`(0, \infty)`. The zeros are returned in ascending
    order. Note that this interval excludes the zero at :math:`x = 0`
    that exists for :math:`n > 1`.

    Parameters
    ----------
    n : int
        Order of Bessel function
    nt : int
        Number of zeros to return

    Returns
    -------
    ndarray
        First `n` zeros of the Bessel function.

    See Also
    --------
    jvp, jv

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996, chapter 5.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html

    Examples
    --------
    >>> import scipy.special as sc

    We can check that we are getting approximations of the zeros by
    evaluating them with `jvp`.

    >>> n = 2
    >>> x = sc.jnp_zeros(n, 3)
    >>> x
    array([3.05423693, 6.70613319, 9.96946782])
    >>> sc.jvp(n, x)
    array([ 2.77555756e-17,  2.08166817e-16, -3.01841885e-16])

    Note that the zero at ``x = 0`` for ``n > 1`` is not included.

    >>> sc.jvp(n, 0)
    0.0