Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Compute zeros of integer-order Bessel function derivatives Jn'.
Compute `nt` zeros of the functions :math:`J_n'(x)` on the
interval :math:`(0, \infty)`. The zeros are returned in ascending
order. Note that this interval excludes the zero at :math:`x = 0`
that exists for :math:`n > 1`.
Parameters
----------
n : int
Order of Bessel function
nt : int
Number of zeros to return
Returns
-------
ndarray
First `n` zeros of the Bessel function.
See Also
--------
jvp, jv
References
----------
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
Functions", John Wiley and Sons, 1996, chapter 5.
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
Examples
--------
>>> import scipy.special as sc
We can check that we are getting approximations of the zeros by
evaluating them with `jvp`.
>>> n = 2
>>> x = sc.jnp_zeros(n, 3)
>>> x
array([3.05423693, 6.70613319, 9.96946782])
>>> sc.jvp(n, x)
array([ 2.77555756e-17, 2.08166817e-16, -3.01841885e-16])
Note that the zero at ``x = 0`` for ``n > 1`` is not included.
>>> sc.jvp(n, 0)
0.0
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :