Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « scipy.special »

Fonction bdtr - module scipy.special

Signature de la fonction bdtr

def bdtr(*args, **kwargs) 

Description

help(scipy.special.bdtr)

bdtr(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

bdtr(k, n, p, out=None)

Binomial distribution cumulative distribution function.

Sum of the terms 0 through `floor(k)` of the Binomial probability density.

.. math::
    \mathrm{bdtr}(k, n, p) =
    \sum_{j=0}^{\lfloor k \rfloor} {{n}\choose{j}} p^j (1-p)^{n-j}

Parameters
----------
k : array_like
    Number of successes (double), rounded down to the nearest integer.
n : array_like
    Number of events (int).
p : array_like
    Probability of success in a single event (float).
out : ndarray, optional
    Optional output array for the function values

Returns
-------
y : scalar or ndarray
    Probability of `floor(k)` or fewer successes in `n` independent events with
    success probabilities of `p`.

Notes
-----
The terms are not summed directly; instead the regularized incomplete beta
function is employed, according to the formula,

.. math::
    \mathrm{bdtr}(k, n, p) =
    I_{1 - p}(n - \lfloor k \rfloor, \lfloor k \rfloor + 1).

Wrapper for the Cephes [1]_ routine `bdtr`.

References
----------
.. [1] Cephes Mathematical Functions Library,
       http://www.netlib.org/cephes/


Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé