Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.special »

Fonction clpmn - module scipy.special

Signature de la fonction clpmn

def clpmn(m, n, z, type=3) 

Description

clpmn.__doc__

Associated Legendre function of the first kind for complex arguments.

    Computes the associated Legendre function of the first kind of order m and
    degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
    Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
    ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.

    Parameters
    ----------
    m : int
       ``|m| <= n``; the order of the Legendre function.
    n : int
       where ``n >= 0``; the degree of the Legendre function.  Often
       called ``l`` (lower case L) in descriptions of the associated
       Legendre function
    z : float or complex
        Input value.
    type : int, optional
       takes values 2 or 3
       2: cut on the real axis ``|x| > 1``
       3: cut on the real axis ``-1 < x < 1`` (default)

    Returns
    -------
    Pmn_z : (m+1, n+1) array
       Values for all orders ``0..m`` and degrees ``0..n``
    Pmn_d_z : (m+1, n+1) array
       Derivatives for all orders ``0..m`` and degrees ``0..n``

    See Also
    --------
    lpmn: associated Legendre functions of the first kind for real z

    Notes
    -----
    By default, i.e. for ``type=3``, phase conventions are chosen according
    to [1]_ such that the function is analytic. The cut lies on the interval
    (-1, 1). Approaching the cut from above or below in general yields a phase
    factor with respect to Ferrer's function of the first kind
    (cf. `lpmn`).

    For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values
    on the interval (-1, 1) in the complex plane yields Ferrer's function
    of the first kind.

    References
    ----------
    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
           Functions", John Wiley and Sons, 1996.
           https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
    .. [2] NIST Digital Library of Mathematical Functions
           https://dlmf.nist.gov/14.21