Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.special »
Signature de la fonction logsumexp
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False)
Description
help(scipy.special.logsumexp)
Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed.
.. versionadded:: 0.11.0
b : array-like, optional
Scaling factor for exp(`a`) must be of the same shape as `a` or
broadcastable to `a`. These values may be negative in order to
implement subtraction.
.. versionadded:: 0.12.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
return_sign : bool, optional
If this is set to True, the result will be a pair containing sign
information; if False, results that are negative will be returned
as NaN. Default is False (no sign information).
.. versionadded:: 0.16.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned. If ``return_sign`` is True, ``res`` contains the log of
the absolute value of the argument.
sgn : ndarray
If ``return_sign`` is True, this will be an array of floating-point
numbers matching res containing +1, 0, -1 (for real-valued inputs)
or a complex phase (for complex inputs). This gives the sign of the
argument of the logarithm in ``res``.
If ``return_sign`` is False, only one result is returned.
See Also
--------
numpy.logaddexp, numpy.logaddexp2
Notes
-----
NumPy has a logaddexp function which is very similar to `logsumexp`, but
only handles two arguments. `logaddexp.reduce` is similar to this
function, but may be less stable.
The logarithm is a multivalued function: for each :math:`x` there is an
infinite number of :math:`z` such that :math:`exp(z) = x`. The convention
is to return the :math:`z` whose imaginary part lies in :math:`(-pi, pi]`.
Examples
--------
>>> import numpy as np
>>> from scipy.special import logsumexp
>>> a = np.arange(10)
>>> logsumexp(a)
9.4586297444267107
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
With weights
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647
Returning a sign flag
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)
Notice that `logsumexp` does not directly support masked arrays. To use it
on a masked array, convert the mask into zero weights:
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
... mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b), np.log(5)
1.6094379124341005, 1.6094379124341005
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :