Module « scipy.special »
Signature de la fonction rel_entr
Description
rel_entr.__doc__
rel_entr(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
rel_entr(x, y, out=None)
Elementwise function for computing relative entropy.
.. math::
\mathrm{rel\_entr}(x, y) =
\begin{cases}
x \log(x / y) & x > 0, y > 0 \\
0 & x = 0, y \ge 0 \\
\infty & \text{otherwise}
\end{cases}
Parameters
----------
x, y : array_like
Input arrays
out : ndarray, optional
Optional output array for the function results
Returns
-------
scalar or ndarray
Relative entropy of the inputs
See Also
--------
entr, kl_div
Notes
-----
.. versionadded:: 0.15.0
This function is jointly convex in x and y.
The origin of this function is in convex programming; see
[1]_. Given two discrete probability distributions :math:`p_1,
\ldots, p_n` and :math:`q_1, \ldots, q_n`, to get the relative
entropy of statistics compute the sum
.. math::
\sum_{i = 1}^n \mathrm{rel\_entr}(p_i, q_i).
See [2]_ for details.
References
----------
.. [1] Grant, Boyd, and Ye, "CVX: Matlab Software for Disciplined Convex
Programming", http://cvxr.com/cvx/
.. [2] Kullback-Leibler divergence,
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :