Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.special »

Fonction bdtrc - module scipy.special

Signature de la fonction bdtrc

Description

bdtrc.__doc__

bdtrc(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

bdtrc(k, n, p)

Binomial distribution survival function.

Sum of the terms `floor(k) + 1` through `n` of the binomial probability
density,

.. math::
    \mathrm{bdtrc}(k, n, p) = \sum_{j=\lfloor k \rfloor +1}^n {{n}\choose{j}} p^j (1-p)^{n-j}

Parameters
----------
k : array_like
    Number of successes (double), rounded down to nearest integer.
n : array_like
    Number of events (int)
p : array_like
    Probability of success in a single event.

Returns
-------
y : ndarray
    Probability of `floor(k) + 1` or more successes in `n` independent
    events with success probabilities of `p`.

See also
--------
bdtr
betainc

Notes
-----
The terms are not summed directly; instead the regularized incomplete beta
function is employed, according to the formula,

.. math::
    \mathrm{bdtrc}(k, n, p) = I_{p}(\lfloor k \rfloor + 1, n - \lfloor k \rfloor).

Wrapper for the Cephes [1]_ routine `bdtrc`.

References
----------
.. [1] Cephes Mathematical Functions Library,
       http://www.netlib.org/cephes/