Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.special »

Fonction eval_genlaguerre - module scipy.special

Signature de la fonction eval_genlaguerre

def eval_genlaguerre(*args, **kwargs) 

Description

help(scipy.special.eval_genlaguerre)

eval_genlaguerre(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

eval_genlaguerre(n, alpha, x, out=None)

Evaluate generalized Laguerre polynomial at a point.

The generalized Laguerre polynomials can be defined via the
confluent hypergeometric function :math:`{}_1F_1` as

.. math::

    L_n^{(\alpha)}(x) = \binom{n + \alpha}{n}
      {}_1F_1(-n, \alpha + 1, x).

When :math:`n` is an integer the result is a polynomial of degree
:math:`n`. See 22.5.54 in [AS]_ for details. The Laguerre
polynomials are the special case where :math:`\alpha = 0`.

Parameters
----------
n : array_like
    Degree of the polynomial. If not an integer, the result is
    determined via the relation to the confluent hypergeometric
    function.
alpha : array_like
    Parameter; must have ``alpha > -1``
x : array_like
    Points at which to evaluate the generalized Laguerre
    polynomial
out : ndarray, optional
    Optional output array for the function values

Returns
-------
L : scalar or ndarray
    Values of the generalized Laguerre polynomial

See Also
--------
roots_genlaguerre : roots and quadrature weights of generalized
                    Laguerre polynomials
genlaguerre : generalized Laguerre polynomial object
hyp1f1 : confluent hypergeometric function
eval_laguerre : evaluate Laguerre polynomials

References
----------
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
    Handbook of Mathematical Functions with Formulas,
    Graphs, and Mathematical Tables. New York: Dover, 1972.


Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé