Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.special »

Fonction gammaincc - module scipy.special

Signature de la fonction gammaincc

Description

gammaincc.__doc__

gammaincc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

gammaincc(a, x)

Regularized upper incomplete gamma function.

It is defined as

.. math::

    Q(a, x) = \frac{1}{\Gamma(a)} \int_x^\infty t^{a - 1}e^{-t} dt

for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details.

Parameters
----------
a : array_like
    Positive parameter
x : array_like
    Nonnegative argument

Returns
-------
scalar or ndarray
    Values of the upper incomplete gamma function

Notes
-----
The function satisfies the relation ``gammainc(a, x) +
gammaincc(a, x) = 1`` where `gammainc` is the regularized lower
incomplete gamma function.

The implementation largely follows that of [boost]_.

See also
--------
gammainc : regularized lower incomplete gamma function
gammaincinv : inverse of the regularized lower incomplete gamma
    function with respect to `x`
gammainccinv : inverse to of the regularized upper incomplete
    gamma function with respect to `x`

References
----------
.. [dlmf] NIST Digital Library of Mathematical functions
          https://dlmf.nist.gov/8.2#E4
.. [boost] Maddock et. al., "Incomplete Gamma Functions",
   https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html

Examples
--------
>>> import scipy.special as sc

It is the survival function of the gamma distribution, so it
starts at 1 and monotonically decreases to 0.

>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])
array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,
       0.00000000e+00])

It is equal to one minus the lower incomplete gamma function.

>>> a, x = 0.5, 0.4
>>> sc.gammaincc(a, x)
0.37109336952269756
>>> 1 - sc.gammainc(a, x)
0.37109336952269756