Module « scipy.special »
Signature de la fonction gammaincc
Description
gammaincc.__doc__
gammaincc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
gammaincc(a, x)
Regularized upper incomplete gamma function.
It is defined as
.. math::
Q(a, x) = \frac{1}{\Gamma(a)} \int_x^\infty t^{a - 1}e^{-t} dt
for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details.
Parameters
----------
a : array_like
Positive parameter
x : array_like
Nonnegative argument
Returns
-------
scalar or ndarray
Values of the upper incomplete gamma function
Notes
-----
The function satisfies the relation ``gammainc(a, x) +
gammaincc(a, x) = 1`` where `gammainc` is the regularized lower
incomplete gamma function.
The implementation largely follows that of [boost]_.
See also
--------
gammainc : regularized lower incomplete gamma function
gammaincinv : inverse of the regularized lower incomplete gamma
function with respect to `x`
gammainccinv : inverse to of the regularized upper incomplete
gamma function with respect to `x`
References
----------
.. [dlmf] NIST Digital Library of Mathematical functions
https://dlmf.nist.gov/8.2#E4
.. [boost] Maddock et. al., "Incomplete Gamma Functions",
https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
Examples
--------
>>> import scipy.special as sc
It is the survival function of the gamma distribution, so it
starts at 1 and monotonically decreases to 0.
>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])
array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,
0.00000000e+00])
It is equal to one minus the lower incomplete gamma function.
>>> a, x = 0.5, 0.4
>>> sc.gammaincc(a, x)
0.37109336952269756
>>> 1 - sc.gammainc(a, x)
0.37109336952269756
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :