Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
i0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
i0(x, out=None)
Modified Bessel function of order 0.
Defined as,
.. math::
I_0(x) = \sum_{k=0}^\infty \frac{(x^2/4)^k}{(k!)^2} = J_0(\imath x),
where :math:`J_0` is the Bessel function of the first kind of order 0.
Parameters
----------
x : array_like
Argument (float)
out : ndarray, optional
Optional output array for the function values
Returns
-------
I : scalar or ndarray
Value of the modified Bessel function of order 0 at `x`.
See Also
--------
iv: Modified Bessel function of any order
i0e: Exponentially scaled modified Bessel function of order 0
Notes
-----
The range is partitioned into the two intervals [0, 8] and (8, infinity).
Chebyshev polynomial expansions are employed in each interval.
This function is a wrapper for the Cephes [1]_ routine `i0`.
References
----------
.. [1] Cephes Mathematical Functions Library,
http://www.netlib.org/cephes/
Examples
--------
Calculate the function at one point:
>>> from scipy.special import i0
>>> i0(1.)
1.2660658777520082
Calculate at several points:
>>> import numpy as np
>>> i0(np.array([-2., 0., 3.5]))
array([2.2795853 , 1. , 7.37820343])
Plot the function from -10 to 10.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> x = np.linspace(-10., 10., 1000)
>>> y = i0(x)
>>> ax.plot(x, y)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :