Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « scipy.special »

Fonction elliprj - module scipy.special

Signature de la fonction elliprj

def elliprj(*args, **kwargs) 

Description

help(scipy.special.elliprj)

elliprj(x1, x2, x3, x4, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

elliprj(x, y, z, p, out=None)

Symmetric elliptic integral of the third kind.

The function RJ is defined as [1]_

.. math::

    R_{\mathrm{J}}(x, y, z, p) =
       \frac{3}{2} \int_0^{+\infty} [(t + x) (t + y) (t + z)]^{-1/2}
       (t + p)^{-1} dt

.. warning::
    This function should be considered experimental when the inputs are
    unbalanced.  Check correctness with another independent implementation.

Parameters
----------
x, y, z, p : array_like
    Real or complex input parameters. `x`, `y`, or `z` are numbers in
    the complex plane cut along the negative real axis (subject to further
    constraints, see Notes), and at most one of them can be zero. `p` must
    be non-zero.
out : ndarray, optional
    Optional output array for the function values

Returns
-------
R : scalar or ndarray
    Value of the integral. If all of `x`, `y`, `z`, and `p` are real, the
    return value is real. Otherwise, the return value is complex.

    If `p` is real and negative, while `x`, `y`, and `z` are real,
    non-negative, and at most one of them is zero, the Cauchy principal
    value is returned. [1]_ [2]_

See Also
--------
elliprc : Degenerate symmetric integral.
elliprd : Symmetric elliptic integral of the second kind.
elliprf : Completely-symmetric elliptic integral of the first kind.
elliprg : Completely-symmetric elliptic integral of the second kind.

Notes
-----
The code implements Carlson's algorithm based on the duplication theorems
and series expansion up to the 7th order. [3]_ The algorithm is slightly
different from its earlier incarnation as it appears in [1]_, in that the
call to `elliprc` (or ``atan``/``atanh``, see [4]_) is no longer needed in
the inner loop. Asymptotic approximations are used where arguments differ
widely in the order of magnitude. [5]_

The input values are subject to certain sufficient but not necessary
constraints when input arguments are complex. Notably, ``x``, ``y``, and
``z`` must have non-negative real parts, unless two of them are
non-negative and complex-conjugates to each other while the other is a real
non-negative number. [1]_ If the inputs do not satisfy the sufficient
condition described in Ref. [1]_ they are rejected outright with the output
set to NaN.

In the case where one of ``x``, ``y``, and ``z`` is equal to ``p``, the
function ``elliprd`` should be preferred because of its less restrictive
domain.

.. versionadded:: 1.8.0

References
----------
.. [1] B. C. Carlson, "Numerical computation of real or complex elliptic
       integrals," Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.
       https://arxiv.org/abs/math/9409227
       https://doi.org/10.1007/BF02198293
.. [2] B. C. Carlson, ed., Chapter 19 in "Digital Library of Mathematical
       Functions," NIST, US Dept. of Commerce.
       https://dlmf.nist.gov/19.20.iii
.. [3] B. C. Carlson, J. FitzSimmons, "Reduction Theorems for Elliptic
       Integrands with the Square Root of Two Quadratic Factors," J.
       Comput. Appl. Math., vol. 118, nos. 1-2, pp. 71-85, 2000.
       https://doi.org/10.1016/S0377-0427(00)00282-X
.. [4] F. Johansson, "Numerical Evaluation of Elliptic Functions, Elliptic
       Integrals and Modular Forms," in J. Blumlein, C. Schneider, P.
       Paule, eds., "Elliptic Integrals, Elliptic Functions and Modular
       Forms in Quantum Field Theory," pp. 269-293, 2019 (Cham,
       Switzerland: Springer Nature Switzerland)
       https://arxiv.org/abs/1806.06725
       https://doi.org/10.1007/978-3-030-04480-0
.. [5] B. C. Carlson, J. L. Gustafson, "Asymptotic Approximations for
       Symmetric Elliptic Integrals," SIAM J. Math. Anls., vol. 25, no. 2,
       pp. 288-303, 1994.
       https://arxiv.org/abs/math/9310223
       https://doi.org/10.1137/S0036141092228477

Examples
--------
Basic homogeneity property:

>>> import numpy as np
>>> from scipy.special import elliprj

>>> x = 1.2 + 3.4j
>>> y = 5.
>>> z = 6.
>>> p = 7.
>>> scale = 0.3 - 0.4j
>>> elliprj(scale*x, scale*y, scale*z, scale*p)
(0.10834905565679157+0.19694950747103812j)

>>> elliprj(x, y, z, p)*np.power(scale, -1.5)
(0.10834905565679556+0.19694950747103854j)

Reduction to simpler elliptic integral:

>>> elliprj(x, y, z, z)
(0.08288462362195129-0.028376809745123258j)

>>> from scipy.special import elliprd
>>> elliprd(x, y, z)
(0.08288462362195136-0.028376809745123296j)

All arguments coincide:

>>> elliprj(x, x, x, x)
(-0.03986825876151896-0.14051741840449586j)

>>> np.power(x, -1.5)
(-0.03986825876151894-0.14051741840449583j)


Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé