Module « scipy.special »
Signature de la fonction hyp0f1
Description
hyp0f1.__doc__
hyp0f1(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
hyp0f1(v, z, out=None)
Confluent hypergeometric limit function 0F1.
Parameters
----------
v : array_like
Real-valued parameter
z : array_like
Real- or complex-valued argument
out : ndarray, optional
Optional output array for the function results
Returns
-------
scalar or ndarray
The confluent hypergeometric limit function
Notes
-----
This function is defined as:
.. math:: _0F_1(v, z) = \sum_{k=0}^{\infty}\frac{z^k}{(v)_k k!}.
It's also the limit as :math:`q \to \infty` of :math:`_1F_1(q; v; z/q)`,
and satisfies the differential equation :math:`f''(z) + vf'(z) =
f(z)`. See [1]_ for more information.
References
----------
.. [1] Wolfram MathWorld, "Confluent Hypergeometric Limit Function",
http://mathworld.wolfram.com/ConfluentHypergeometricLimitFunction.html
Examples
--------
>>> import scipy.special as sc
It is one when `z` is zero.
>>> sc.hyp0f1(1, 0)
1.0
It is the limit of the confluent hypergeometric function as `q`
goes to infinity.
>>> q = np.array([1, 10, 100, 1000])
>>> v = 1
>>> z = 1
>>> sc.hyp1f1(q, v, z / q)
array([2.71828183, 2.31481985, 2.28303778, 2.27992985])
>>> sc.hyp0f1(v, z)
2.2795853023360673
It is related to Bessel functions.
>>> n = 1
>>> x = np.linspace(0, 1, 5)
>>> sc.jv(n, x)
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
>>> (0.5 * x)**n / sc.factorial(n) * sc.hyp0f1(n + 1, -0.25 * x**2)
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :