Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.special »
Signature de la fonction kve
def kve(*args, **kwargs)
Description
help(scipy.special.kve)
kve(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
kve(v, z, out=None)
Exponentially scaled modified Bessel function of the second kind.
Returns the exponentially scaled, modified Bessel function of the
second kind (sometimes called the third kind) for real order `v` at
complex `z`::
kve(v, z) = kv(v, z) * exp(z)
Parameters
----------
v : array_like of float
Order of Bessel functions
z : array_like of complex
Argument at which to evaluate the Bessel functions
out : ndarray, optional
Optional output array for the function results
Returns
-------
scalar or ndarray
The exponentially scaled modified Bessel function of the second kind.
See Also
--------
kv : This function without exponential scaling.
k0e : Faster version of this function for order 0.
k1e : Faster version of this function for order 1.
Notes
-----
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
algorithm used, see [2]_ and the references therein.
References
----------
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
of a Complex Argument and Nonnegative Order",
http://netlib.org/amos/
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
functions of a complex argument and nonnegative order", ACM
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
Examples
--------
In the following example `kv` returns 0 whereas `kve` still returns
a useful finite number.
>>> import numpy as np
>>> from scipy.special import kv, kve
>>> import matplotlib.pyplot as plt
>>> kv(3, 1000.), kve(3, 1000.)
(0.0, 0.03980696128440973)
Evaluate the function at one point for different orders by
providing a list or NumPy array as argument for the `v` parameter:
>>> kve([0, 1, 1.5], 1.)
array([1.14446308, 1.63615349, 2.50662827])
Evaluate the function at several points for order 0 by providing an
array for `z`.
>>> points = np.array([1., 3., 10.])
>>> kve(0, points)
array([1.14446308, 0.6977616 , 0.39163193])
Evaluate the function at several points for different orders by
providing arrays for both `v` for `z`. Both arrays have to be
broadcastable to the correct shape. To calculate the orders 0, 1
and 2 for a 1D array of points:
>>> kve([[0], [1], [2]], points)
array([[1.14446308, 0.6977616 , 0.39163193],
[1.63615349, 0.80656348, 0.41076657],
[4.41677005, 1.23547058, 0.47378525]])
Plot the functions of order 0 to 3 from 0 to 5.
>>> fig, ax = plt.subplots()
>>> x = np.linspace(0., 5., 1000)
>>> for i in range(4):
... ax.plot(x, kve(i, x), label=fr'$K_{i!r}(z)\cdot e^z$')
>>> ax.legend()
>>> ax.set_xlabel(r"$z$")
>>> ax.set_ylim(0, 4)
>>> ax.set_xlim(0, 5)
>>> plt.show()
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :