Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Gauss-Hermite (statistician's) quadrature.
Compute the sample points and weights for Gauss-Hermite
quadrature. The sample points are the roots of the nth degree
Hermite polynomial, :math:`He_n(x)`. These sample points and
weights correctly integrate polynomials of degree :math:`2n - 1`
or less over the interval :math:`[-\infty, \infty]` with weight
function :math:`w(x) = e^{-x^2/2}`. See 22.2.15 in [AS]_ for more
details.
Parameters
----------
n : int
quadrature order
mu : bool, optional
If True, return the sum of the weights, optional.
Returns
-------
x : ndarray
Sample points
w : ndarray
Weights
mu : float
Sum of the weights
Notes
-----
For small n up to 150 a modified version of the Golub-Welsch
algorithm is used. Nodes are computed from the eigenvalue
problem and improved by one step of a Newton iteration.
The weights are computed from the well-known analytical formula.
For n larger than 150 an optimal asymptotic algorithm is used
which computes nodes and weights in a numerical stable manner.
The algorithm has linear runtime making computation for very
large n (several thousand or more) feasible.
See Also
--------
scipy.integrate.quadrature
scipy.integrate.fixed_quad
numpy.polynomial.hermite_e.hermegauss
References
----------
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :