Module « scipy.special »
Signature de la fonction btdtri
Description
btdtri.__doc__
btdtri(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
btdtri(a, b, p)
The `p`-th quantile of the beta distribution.
This function is the inverse of the beta cumulative distribution function,
`btdtr`, returning the value of `x` for which `btdtr(a, b, x) = p`, or
.. math::
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
Parameters
----------
a : array_like
Shape parameter (`a` > 0).
b : array_like
Shape parameter (`b` > 0).
p : array_like
Cumulative probability, in [0, 1].
Returns
-------
x : ndarray
The quantile corresponding to `p`.
See Also
--------
betaincinv
btdtr
Notes
-----
The value of `x` is found by interval halving or Newton iterations.
Wrapper for the Cephes [1]_ routine `incbi`, which solves the equivalent
problem of finding the inverse of the incomplete beta integral.
References
----------
.. [1] Cephes Mathematical Functions Library,
http://www.netlib.org/cephes/
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :