Module « scipy.special »
Signature de la fonction bernoulli
def bernoulli(n)
Description
bernoulli.__doc__
Bernoulli numbers B0..Bn (inclusive).
Parameters
----------
n : int
Indicated the number of terms in the Bernoulli series to generate.
Returns
-------
ndarray
The Bernoulli numbers ``[B(0), B(1), ..., B(n)]``.
References
----------
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
Functions", John Wiley and Sons, 1996.
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
.. [2] "Bernoulli number", Wikipedia, https://en.wikipedia.org/wiki/Bernoulli_number
Examples
--------
>>> from scipy.special import bernoulli, zeta
>>> bernoulli(4)
array([ 1. , -0.5 , 0.16666667, 0. , -0.03333333])
The Wikipedia article ([2]_) points out the relationship between the
Bernoulli numbers and the zeta function, ``B_n^+ = -n * zeta(1 - n)``
for ``n > 0``:
>>> n = np.arange(1, 5)
>>> -n * zeta(1 - n)
array([ 0.5 , 0.16666667, -0. , -0.03333333])
Note that, in the notation used in the wikipedia article,
`bernoulli` computes ``B_n^-`` (i.e. it used the convention that
``B_1`` is -1/2). The relation given above is for ``B_n^+``, so the
sign of 0.5 does not match the output of ``bernoulli(4)``.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :