Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.special »
Signature de la fonction gdtrib
def gdtrib(*args, **kwargs)
Description
help(scipy.special.gdtrib)
gdtrib(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
gdtrib(a, p, x, out=None)
Inverse of `gdtr` vs b.
Returns the inverse with respect to the parameter `b` of ``p =
gdtr(a, b, x)``, the cumulative distribution function of the gamma
distribution.
Parameters
----------
a : array_like
`a` parameter values of ``gdtr(a, b, x)`. ``1/a`` is the "scale"
parameter of the gamma distribution.
p : array_like
Probability values.
x : array_like
Nonnegative real values, from the domain of the gamma distribution.
out : ndarray, optional
If a fourth argument is given, it must be a numpy.ndarray whose size
matches the broadcast result of `a`, `b` and `x`. `out` is then the
array returned by the function.
Returns
-------
b : scalar or ndarray
Values of the `b` parameter such that `p = gdtr(a, b, x)`. `b` is
the "shape" parameter of the gamma distribution.
See Also
--------
gdtr : CDF of the gamma distribution.
gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.
Notes
-----
The cumulative distribution function `p` is computed using the Cephes [1]_
routines `igam` and `igamc`. Computation of `b` involves a search for a value
that produces the desired value of `p` using Chandrupatla's bracketing
root finding algorithm [2]_.
Note that there are some edge cases where `gdtrib` is extended by taking
limits where they are uniquely defined. In particular
``x == 0`` with ``p > 0`` and ``p == 0`` with ``x > 0``.
For these edge cases, a numerical result will be returned for
``gdtrib(a, p, x)`` even though ``gdtr(a, gdtrib(a, p, x), x)`` is
undefined.
References
----------
.. [1] Cephes Mathematical Functions Library,
http://www.netlib.org/cephes/
.. [2] Chandrupatla, Tirupathi R.
"A new hybrid quadratic/bisection algorithm for finding the zero of a
nonlinear function without using derivatives".
Advances in Engineering Software, 28(3), 145-149.
https://doi.org/10.1016/s0965-9978(96)00051-8
Examples
--------
First evaluate `gdtr`.
>>> from scipy.special import gdtr, gdtrib
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442
Verify the inverse.
>>> gdtrib(1.2, p, 5.6)
3.3999999999999995
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :