Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « scipy.special »

Fonction jvp - module scipy.special

Signature de la fonction jvp

def jvp(v, z, n=1) 

Description

help(scipy.special.jvp)

Compute derivatives of Bessel functions of the first kind.

Compute the nth derivative of the Bessel function `Jv` with
respect to `z`.

Parameters
----------
v : array_like or float
    Order of Bessel function
z : complex
    Argument at which to evaluate the derivative; can be real or
    complex.
n : int, default 1
    Order of derivative. For 0 returns the Bessel function `jv` itself.

Returns
-------
scalar or ndarray
    Values of the derivative of the Bessel function.

Notes
-----
The derivative is computed using the relation DLFM 10.6.7 [2]_.

References
----------
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
       Functions", John Wiley and Sons, 1996, chapter 5.
       https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html

.. [2] NIST Digital Library of Mathematical Functions.
       https://dlmf.nist.gov/10.6.E7

Examples
--------

Compute the Bessel function of the first kind of order 0 and
its first two derivatives at 1.

>>> from scipy.special import jvp
>>> jvp(0, 1, 0), jvp(0, 1, 1), jvp(0, 1, 2)
(0.7651976865579666, -0.44005058574493355, -0.3251471008130331)

Compute the first derivative of the Bessel function of the first
kind for several orders at 1 by providing an array for `v`.

>>> jvp([0, 1, 2], 1, 1)
array([-0.44005059,  0.3251471 ,  0.21024362])

Compute the first derivative of the Bessel function of the first
kind of order 0 at several points by providing an array for `z`.

>>> import numpy as np
>>> points = np.array([0., 1.5, 3.])
>>> jvp(0, points, 1)
array([-0.        , -0.55793651, -0.33905896])

Plot the Bessel function of the first kind of order 1 and its
first three derivatives.

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10, 1000)
>>> fig, ax = plt.subplots()
>>> ax.plot(x, jvp(1, x, 0), label=r"$J_1$")
>>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$")
>>> ax.plot(x, jvp(1, x, 2), label=r"$J_1''$")
>>> ax.plot(x, jvp(1, x, 3), label=r"$J_1'''$")
>>> plt.legend()
>>> plt.show()


Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé