Module « scipy.special »
Signature de la fonction expn
Description
expn.__doc__
expn(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
expn(n, x, out=None)
Generalized exponential integral En.
For integer :math:`n \geq 0` and real :math:`x \geq 0` the
generalized exponential integral is defined as [dlmf]_
.. math::
E_n(x) = x^{n - 1} \int_x^\infty \frac{e^{-t}}{t^n} dt.
Parameters
----------
n: array_like
Non-negative integers
x: array_like
Real argument
out: ndarray, optional
Optional output array for the function results
Returns
-------
scalar or ndarray
Values of the generalized exponential integral
See Also
--------
exp1 : special case of :math:`E_n` for :math:`n = 1`
expi : related to :math:`E_n` when :math:`n = 1`
References
----------
.. [dlmf] Digital Library of Mathematical Functions, 8.19.2
https://dlmf.nist.gov/8.19#E2
Examples
--------
>>> import scipy.special as sc
Its domain is nonnegative n and x.
>>> sc.expn(-1, 1.0), sc.expn(1, -1.0)
(nan, nan)
It has a pole at ``x = 0`` for ``n = 1, 2``; for larger ``n`` it
is equal to ``1 / (n - 1)``.
>>> sc.expn([0, 1, 2, 3, 4], 0)
array([ inf, inf, 1. , 0.5 , 0.33333333])
For n equal to 0 it reduces to ``exp(-x) / x``.
>>> x = np.array([1, 2, 3, 4])
>>> sc.expn(0, x)
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
>>> np.exp(-x) / x
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
For n equal to 1 it reduces to `exp1`.
>>> sc.expn(1, x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
>>> sc.exp1(x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :