Module « scipy.special »
Signature de la fonction eval_legendre
Description
eval_legendre.__doc__
eval_legendre(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
eval_legendre(n, x, out=None)
Evaluate Legendre polynomial at a point.
The Legendre polynomials can be defined via the Gauss
hypergeometric function :math:`{}_2F_1` as
.. math::
P_n(x) = {}_2F_1(-n, n + 1; 1; (1 - x)/2).
When :math:`n` is an integer the result is a polynomial of degree
:math:`n`. See 22.5.49 in [AS]_ for details.
Parameters
----------
n : array_like
Degree of the polynomial. If not an integer, the result is
determined via the relation to the Gauss hypergeometric
function.
x : array_like
Points at which to evaluate the Legendre polynomial
Returns
-------
P : ndarray
Values of the Legendre polynomial
See Also
--------
roots_legendre : roots and quadrature weights of Legendre
polynomials
legendre : Legendre polynomial object
hyp2f1 : Gauss hypergeometric function
numpy.polynomial.legendre.Legendre : Legendre series
References
----------
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Examples
--------
>>> from scipy.special import eval_legendre
Evaluate the zero-order Legendre polynomial at x = 0
>>> eval_legendre(0, 0)
1.0
Evaluate the first-order Legendre polynomial between -1 and 1
>>> X = np.linspace(-1, 1, 5) # Domain of Legendre polynomials
>>> eval_legendre(1, X)
array([-1. , -0.5, 0. , 0.5, 1. ])
Evaluate Legendre polynomials of order 0 through 4 at x = 0
>>> N = range(0, 5)
>>> eval_legendre(N, 0)
array([ 1. , 0. , -0.5 , 0. , 0.375])
Plot Legendre polynomials of order 0 through 4
>>> X = np.linspace(-1, 1)
>>> import matplotlib.pyplot as plt
>>> for n in range(0, 5):
... y = eval_legendre(n, X)
... plt.plot(X, y, label=r'$P_{}(x)$'.format(n))
>>> plt.title("Legendre Polynomials")
>>> plt.xlabel("x")
>>> plt.ylabel(r'$P_n(x)$')
>>> plt.legend(loc='lower right')
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :