Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
eval_chebyt(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
eval_chebyt(n, x, out=None)
Evaluate Chebyshev polynomial of the first kind at a point.
The Chebyshev polynomials of the first kind can be defined via the
Gauss hypergeometric function :math:`{}_2F_1` as
.. math::
T_n(x) = {}_2F_1(n, -n; 1/2; (1 - x)/2).
When :math:`n` is an integer the result is a polynomial of degree
:math:`n`. See 22.5.47 in [AS]_ for details.
Parameters
----------
n : array_like
Degree of the polynomial. If not an integer, the result is
determined via the relation to the Gauss hypergeometric
function.
x : array_like
Points at which to evaluate the Chebyshev polynomial
Returns
-------
T : ndarray
Values of the Chebyshev polynomial
See Also
--------
roots_chebyt : roots and quadrature weights of Chebyshev
polynomials of the first kind
chebyu : Chebychev polynomial object
eval_chebyu : evaluate Chebyshev polynomials of the second kind
hyp2f1 : Gauss hypergeometric function
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
Notes
-----
This routine is numerically stable for `x` in ``[-1, 1]`` at least
up to order ``10000``.
References
----------
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :