Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.special »

Fonction eval_sh_chebyt - module scipy.special

Signature de la fonction eval_sh_chebyt

Description

eval_sh_chebyt.__doc__

eval_sh_chebyt(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

eval_sh_chebyt(n, x, out=None)

Evaluate shifted Chebyshev polynomial of the first kind at a
point.

These polynomials are defined as

.. math::

    T_n^*(x) = T_n(2x - 1)

where :math:`T_n` is a Chebyshev polynomial of the first kind. See
22.5.14 in [AS]_ for details.

Parameters
----------
n : array_like
    Degree of the polynomial. If not an integer, the result is
    determined via the relation to `eval_chebyt`.
x : array_like
    Points at which to evaluate the shifted Chebyshev polynomial

Returns
-------
T : ndarray
    Values of the shifted Chebyshev polynomial

See Also
--------
roots_sh_chebyt : roots and quadrature weights of shifted
                  Chebyshev polynomials of the first kind
sh_chebyt : shifted Chebyshev polynomial object
eval_chebyt : evaluate Chebyshev polynomials of the first kind
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series

References
----------
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
    Handbook of Mathematical Functions with Formulas,
    Graphs, and Mathematical Tables. New York: Dover, 1972.