Module « scipy.stats »
Classe « gaussian_kde »
Informations générales
Héritage
builtins.object
gaussian_kde
Définition
class gaussian_kde(builtins.object):
Description [extrait de gaussian_kde.__doc__]
Representation of a kernel-density estimate using Gaussian kernels.
Kernel density estimation is a way to estimate the probability density
function (PDF) of a random variable in a non-parametric way.
`gaussian_kde` works for both uni-variate and multi-variate data. It
includes automatic bandwidth determination. The estimation works best for
a unimodal distribution; bimodal or multi-modal distributions tend to be
oversmoothed.
Parameters
----------
dataset : array_like
Datapoints to estimate from. In case of univariate data this is a 1-D
array, otherwise a 2-D array with shape (# of dims, # of data).
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as `kde.factor`. If a callable, it should
take a `gaussian_kde` instance as only parameter and return a scalar.
If None (default), 'scott' is used. See Notes for more details.
weights : array_like, optional
weights of datapoints. This must be the same shape as dataset.
If None (default), the samples are assumed to be equally weighted
Attributes
----------
dataset : ndarray
The dataset with which `gaussian_kde` was initialized.
d : int
Number of dimensions.
n : int
Number of datapoints.
neff : int
Effective number of datapoints.
.. versionadded:: 1.2.0
factor : float
The bandwidth factor, obtained from `kde.covariance_factor`, with which
the covariance matrix is multiplied.
covariance : ndarray
The covariance matrix of `dataset`, scaled by the calculated bandwidth
(`kde.factor`).
inv_cov : ndarray
The inverse of `covariance`.
Methods
-------
evaluate
__call__
integrate_gaussian
integrate_box_1d
integrate_box
integrate_kde
pdf
logpdf
resample
set_bandwidth
covariance_factor
Notes
-----
Bandwidth selection strongly influences the estimate obtained from the KDE
(much more so than the actual shape of the kernel). Bandwidth selection
can be done by a "rule of thumb", by cross-validation, by "plug-in
methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
uses a rule of thumb, the default is Scott's Rule.
Scott's Rule [1]_, implemented as `scotts_factor`, is::
n**(-1./(d+4)),
with ``n`` the number of data points and ``d`` the number of dimensions.
In the case of unequally weighted points, `scotts_factor` becomes::
neff**(-1./(d+4)),
with ``neff`` the effective number of datapoints.
Silverman's Rule [2]_, implemented as `silverman_factor`, is::
(n * (d + 2) / 4.)**(-1. / (d + 4)).
or in the case of unequally weighted points::
(neff * (d + 2) / 4.)**(-1. / (d + 4)).
Good general descriptions of kernel density estimation can be found in [1]_
and [2]_, the mathematics for this multi-dimensional implementation can be
found in [1]_.
With a set of weighted samples, the effective number of datapoints ``neff``
is defined by::
neff = sum(weights)^2 / sum(weights^2)
as detailed in [5]_.
References
----------
.. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
Visualization", John Wiley & Sons, New York, Chicester, 1992.
.. [2] B.W. Silverman, "Density Estimation for Statistics and Data
Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
Chapman and Hall, London, 1986.
.. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
.. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
conditional density estimation", Computational Statistics & Data
Analysis, Vol. 36, pp. 279-298, 2001.
.. [5] Gray P. G., 1969, Journal of the Royal Statistical Society.
Series A (General), 132, 272
Examples
--------
Generate some random two-dimensional data:
>>> from scipy import stats
>>> def measure(n):
... "Measurement model, return two coupled measurements."
... m1 = np.random.normal(size=n)
... m2 = np.random.normal(scale=0.5, size=n)
... return m1+m2, m1-m2
>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()
Perform a kernel density estimate on the data:
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)
Plot the results:
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()
Constructeur(s)
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__call__(self, points) |
Evaluate the estimated pdf on a set of points. [extrait de evaluate.__doc__] |
covariance_factor(self) |
Computes the coefficient (`kde.factor`) that [extrait de scotts_factor.__doc__] |
evaluate(self, points) |
Evaluate the estimated pdf on a set of points. [extrait de evaluate.__doc__] |
integrate_box(self, low_bounds, high_bounds, maxpts=None) |
Computes the integral of a pdf over a rectangular interval. [extrait de integrate_box.__doc__] |
integrate_box_1d(self, low, high) |
|
integrate_gaussian(self, mean, cov) |
|
integrate_kde(self, other) |
|
logpdf(self, x) |
|
pdf(self, x) |
|
resample(self, size=None, seed=None) |
Randomly sample a dataset from the estimated pdf. [extrait de resample.__doc__] |
scotts_factor(self) |
Computes the coefficient (`kde.factor`) that [extrait de scotts_factor.__doc__] |
set_bandwidth(self, bw_method=None) |
Compute the estimator bandwidth with given method. [extrait de set_bandwidth.__doc__] |
silverman_factor(self) |
Compute the Silverman factor. [extrait de silverman_factor.__doc__] |
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__hash__,
__init_subclass__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__,
__subclasshook__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :