Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction truncpareto
def truncpareto(*args, **kwds)
Description
help(scipy.stats.truncpareto)
An upper truncated Pareto continuous random variable.
As an instance of the `rv_continuous` class, `truncpareto` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(b, c, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, b, c, loc=0, scale=1)
Probability density function.
logpdf(x, b, c, loc=0, scale=1)
Log of the probability density function.
cdf(x, b, c, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, b, c, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, b, c, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, b, c, loc=0, scale=1)
Log of the survival function.
ppf(q, b, c, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, b, c, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(order, b, c, loc=0, scale=1)
Non-central moment of the specified order.
stats(b, c, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(b, c, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(b, c), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(b, c, loc=0, scale=1)
Median of the distribution.
mean(b, c, loc=0, scale=1)
Mean of the distribution.
var(b, c, loc=0, scale=1)
Variance of the distribution.
std(b, c, loc=0, scale=1)
Standard deviation of the distribution.
interval(confidence, b, c, loc=0, scale=1)
Confidence interval with equal areas around the median.
See Also
--------
pareto : Pareto distribution
Notes
-----
The probability density function for `truncpareto` is:
.. math::
f(x, b, c) = \frac{b}{1 - c^{-b}} \frac{1}{x^{b+1}}
for :math:`b > 0`, :math:`c > 1` and :math:`1 \le x \le c`.
`truncpareto` takes `b` and `c` as shape parameters for :math:`b` and
:math:`c`.
Notice that the upper truncation value :math:`c` is defined in
standardized form so that random values of an unscaled, unshifted variable
are within the range ``[1, c]``.
If ``u_r`` is the upper bound to a scaled and/or shifted variable,
then ``c = (u_r - loc) / scale``. In other words, the support of the
distribution becomes ``(scale + loc) <= x <= (c*scale + loc)`` when
`scale` and/or `loc` are provided.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``truncpareto.pdf(x, b, c, loc, scale)`` is identically
equivalent to ``truncpareto.pdf(y, b, c) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
References
----------
.. [1] Burroughs, S. M., and Tebbens S. F.
"Upper-truncated power laws in natural systems."
Pure and Applied Geophysics 158.4 (2001): 741-757.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import truncpareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> b, c = 2, 5
>>> mean, var, skew, kurt = truncpareto.stats(b, c, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(truncpareto.ppf(0.01, b, c),
... truncpareto.ppf(0.99, b, c), 100)
>>> ax.plot(x, truncpareto.pdf(x, b, c),
... 'r-', lw=5, alpha=0.6, label='truncpareto pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = truncpareto(b, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = truncpareto.ppf([0.001, 0.5, 0.999], b, c)
>>> np.allclose([0.001, 0.5, 0.999], truncpareto.cdf(vals, b, c))
True
Generate random numbers:
>>> r = truncpareto.rvs(b, c, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :