Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction mvsdist - module scipy.stats

Signature de la fonction mvsdist

def mvsdist(data) 

Description

mvsdist.__doc__

    'Frozen' distributions for mean, variance, and standard deviation of data.

    Parameters
    ----------
    data : array_like
        Input array. Converted to 1-D using ravel.
        Requires 2 or more data-points.

    Returns
    -------
    mdist : "frozen" distribution object
        Distribution object representing the mean of the data.
    vdist : "frozen" distribution object
        Distribution object representing the variance of the data.
    sdist : "frozen" distribution object
        Distribution object representing the standard deviation of the data.

    See Also
    --------
    bayes_mvs

    Notes
    -----
    The return values from ``bayes_mvs(data)`` is equivalent to
    ``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``.

    In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)``
    on the three distribution objects returned from this function will give
    the same results that are returned from `bayes_mvs`.

    References
    ----------
    T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
    standard-deviation from data", https://scholarsarchive.byu.edu/facpub/278,
    2006.

    Examples
    --------
    >>> from scipy import stats
    >>> data = [6, 9, 12, 7, 8, 8, 13]
    >>> mean, var, std = stats.mvsdist(data)

    We now have frozen distribution objects "mean", "var" and "std" that we can
    examine:

    >>> mean.mean()
    9.0
    >>> mean.interval(0.95)
    (6.6120585482655692, 11.387941451734431)
    >>> mean.std()
    1.1952286093343936