Vous avez des améliorations (ou des corrections) à proposer pour ce document :
je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Calculate the entropy of a distribution for given probability values.
If only probabilities `pk` are given, the entropy is calculated as
``S = -sum(pk * log(pk), axis=axis)``.
If `qk` is not None, then compute the Kullback-Leibler divergence
``S = sum(pk * log(pk / qk), axis=axis)``.
This routine will normalize `pk` and `qk` if they don't sum to 1.
Parameters
----------
pk : sequence
Defines the (discrete) distribution. ``pk[i]`` is the (possibly
unnormalized) probability of event ``i``.
qk : sequence, optional
Sequence against which the relative entropy is computed. Should be in
the same format as `pk`.
base : float, optional
The logarithmic base to use, defaults to ``e`` (natural logarithm).
axis: int, optional
The axis along which the entropy is calculated. Default is 0.
Returns
-------
S : float
The calculated entropy.
Examples
--------
>>> from scipy.stats import entropy
Bernoulli trial with different p.
The outcome of a fair coin is the most uncertain:
>>> entropy([1/2, 1/2], base=2)
1.0
The outcome of a biased coin is less uncertain:
>>> entropy([9/10, 1/10], base=2)
0.46899559358928117
Relative entropy:
>>> entropy([1/2, 1/2], qk=[9/10, 1/10])
0.5108256237659907
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :