Module « scipy.stats »
Signature de la fonction binom
def binom(*args, **kwds)
Description
binom.__doc__
A binomial discrete random variable.
As an instance of the `rv_discrete` class, `binom` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(n, p, loc=0, size=1, random_state=None)
Random variates.
pmf(k, n, p, loc=0)
Probability mass function.
logpmf(k, n, p, loc=0)
Log of the probability mass function.
cdf(k, n, p, loc=0)
Cumulative distribution function.
logcdf(k, n, p, loc=0)
Log of the cumulative distribution function.
sf(k, n, p, loc=0)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(k, n, p, loc=0)
Log of the survival function.
ppf(q, n, p, loc=0)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, n, p, loc=0)
Inverse survival function (inverse of ``sf``).
stats(n, p, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(n, p, loc=0)
(Differential) entropy of the RV.
expect(func, args=(n, p), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(n, p, loc=0)
Median of the distribution.
mean(n, p, loc=0)
Mean of the distribution.
var(n, p, loc=0)
Variance of the distribution.
std(n, p, loc=0)
Standard deviation of the distribution.
interval(alpha, n, p, loc=0)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability mass function for `binom` is:
.. math::
f(k) = \binom{n}{k} p^k (1-p)^{n-k}
for :math:`k \in \{0, 1, \dots, n\}`, :math:`0 \leq p \leq 1`
`binom` takes :math:`n` and :math:`p` as shape parameters,
where :math:`p` is the probability of a single success
and :math:`1-p` is the probability of a single failure.
The probability mass function above is defined in the "standardized" form.
To shift distribution use the ``loc`` parameter.
Specifically, ``binom.pmf(k, n, p, loc)`` is identically
equivalent to ``binom.pmf(k - loc, n, p)``.
Examples
--------
>>> from scipy.stats import binom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> n, p = 5, 0.4
>>> mean, var, skew, kurt = binom.stats(n, p, moments='mvsk')
Display the probability mass function (``pmf``):
>>> x = np.arange(binom.ppf(0.01, n, p),
... binom.ppf(0.99, n, p))
>>> ax.plot(x, binom.pmf(x, n, p), 'bo', ms=8, label='binom pmf')
>>> ax.vlines(x, 0, binom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function)
to fix the shape and location. This returns a "frozen" RV object holding
the given parameters fixed.
Freeze the distribution and display the frozen ``pmf``:
>>> rv = binom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Check accuracy of ``cdf`` and ``ppf``:
>>> prob = binom.cdf(x, n, p)
>>> np.allclose(x, binom.ppf(prob, n, p))
True
Generate random numbers:
>>> r = binom.rvs(n, p, size=1000)
See Also
--------
hypergeom, nbinom, nhypergeom
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :