Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Contenu du module « scipy.stats »

Liste des classes du module scipy.stats

Nom de la classe Description
gaussian_kde Representation of a kernel-density estimate using Gaussian kernels. [extrait de gaussian_kde.__doc__]
NumericalInverseHermite
rv_continuous A generic continuous random variable class meant for subclassing. [extrait de rv_continuous.__doc__]
rv_discrete A generic discrete random variable class meant for subclassing. [extrait de rv_discrete.__doc__]
rv_histogram

Liste des exceptions du module scipy.stats

Nom de la classe d'exception Description
F_onewayBadInputSizesWarning
F_onewayConstantInputWarning
PearsonRConstantInputWarning Warning generated by `pearsonr` when an input is constant. [extrait de PearsonRConstantInputWarning.__doc__]
PearsonRNearConstantInputWarning Warning generated by `pearsonr` when an input is nearly constant. [extrait de PearsonRNearConstantInputWarning.__doc__]
SpearmanRConstantInputWarning Warning generated by `spearmanr` when an input is constant. [extrait de SpearmanRConstantInputWarning.__doc__]

Liste des fonctions du module scipy.stats

Signature de la fonction Description
alexandergovern(*args, nan_policy='propagate') Performs the Alexander Govern test. [extrait de alexandergovern.__doc__]
alpha(*args, **kwds) An alpha continuous random variable. [extrait de __doc__]
anderson(x, dist='norm') Anderson-Darling test for data coming from a particular distribution. [extrait de anderson.__doc__]
anderson_ksamp(samples, midrank=True) The Anderson-Darling test for k-samples. [extrait de anderson_ksamp.__doc__]
anglit(*args, **kwds) An anglit continuous random variable. [extrait de __doc__]
ansari(x, y, alternative='two-sided') Perform the Ansari-Bradley test for equal scale parameters. [extrait de ansari.__doc__]
arcsine(*args, **kwds) An arcsine continuous random variable. [extrait de __doc__]
argus(*args, **kwds)
barnard_exact(table, alternative='two-sided', pooled=True, n=32) Perform a Barnard exact test on a 2x2 contingency table. [extrait de barnard_exact.__doc__]
bartlett(*args) Perform Bartlett's test for equal variances. [extrait de bartlett.__doc__]
bayes_mvs(data, alpha=0.9)
bernoulli(*args, **kwds) A Bernoulli discrete random variable. [extrait de __doc__]
beta(*args, **kwds) A beta continuous random variable. [extrait de __doc__]
betabinom(*args, **kwds) A beta-binomial discrete random variable. [extrait de __doc__]
betaprime(*args, **kwds) A beta prime continuous random variable. [extrait de __doc__]
binned_statistic(x, values, statistic='mean', bins=10, range=None)
binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False)
binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False, binned_statistic_result=None)
binom(*args, **kwds) A binomial discrete random variable. [extrait de __doc__]
binom_test(x, n=None, p=0.5, alternative='two-sided') Perform a test that the probability of success is p. [extrait de binom_test.__doc__]
binomtest(k, n, p=0.5, alternative='two-sided')
boltzmann(*args, **kwds) A Boltzmann (Truncated Discrete Exponential) random variable. [extrait de __doc__]
bootstrap(data, statistic, *, vectorized=True, paired=False, axis=0, confidence_level=0.95, n_resamples=9999, batch=None, method='BCa', random_state=None)
boschloo_exact(table, alternative='two-sided', n=32) Perform Boschloo's exact test on a 2x2 contingency table. [extrait de boschloo_exact.__doc__]
boxcox(x, lmbda=None, alpha=None, optimizer=None) Return a dataset transformed by a Box-Cox power transformation. [extrait de boxcox.__doc__]
boxcox_llf(lmb, data) The boxcox log-likelihood function. [extrait de boxcox_llf.__doc__]
boxcox_normmax(x, brack=None, method='pearsonr', optimizer=None) Compute optimal Box-Cox transform parameter for input data. [extrait de boxcox_normmax.__doc__]
boxcox_normplot(x, la, lb, plot=None, N=80) Compute parameters for a Box-Cox normality plot, optionally show it. [extrait de boxcox_normplot.__doc__]
bradford(*args, **kwds) A Bradford continuous random variable. [extrait de __doc__]
brunnermunzel(x, y, alternative='two-sided', distribution='t', nan_policy='propagate') Compute the Brunner-Munzel test on samples x and y. [extrait de brunnermunzel.__doc__]
burr(*args, **kwds) A Burr (Type III) continuous random variable. [extrait de __doc__]
burr12(*args, **kwds) A Burr (Type XII) continuous random variable. [extrait de __doc__]
cauchy(*args, **kwds) A Cauchy continuous random variable. [extrait de __doc__]
chi(*args, **kwds) A chi continuous random variable. [extrait de __doc__]
chi2(*args, **kwds) A chi-squared continuous random variable. [extrait de __doc__]
chi2_contingency(observed, correction=True, lambda_=None) Chi-square test of independence of variables in a contingency table. [extrait de chi2_contingency.__doc__]
chisquare(f_obs, f_exp=None, ddof=0, axis=0) Calculate a one-way chi-square test. [extrait de chisquare.__doc__]
circmean(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate') Compute the circular mean for samples in a range. [extrait de circmean.__doc__]
circstd(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate')
circvar(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate') Compute the circular variance for samples assumed to be in a range. [extrait de circvar.__doc__]
combine_pvalues(pvalues, method='fisher', weights=None)
cosine(*args, **kwds) A cosine continuous random variable. [extrait de __doc__]
cramervonmises(rvs, cdf, args=()) Perform the one-sample Cramér-von Mises test for goodness of fit. [extrait de cramervonmises.__doc__]
cramervonmises_2samp(x, y, method='auto') Perform the two-sample Cramér-von Mises test for goodness of fit. [extrait de cramervonmises_2samp.__doc__]
crystalball(*args, **kwds)
cumfreq(a, numbins=10, defaultreallimits=None, weights=None) Return a cumulative frequency histogram, using the histogram function. [extrait de cumfreq.__doc__]
describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate') Compute several descriptive statistics of the passed array. [extrait de describe.__doc__]
dgamma(*args, **kwds) A double gamma continuous random variable. [extrait de __doc__]
differential_entropy(values: 'np.typing.ArrayLike', *, window_length: 'Optional[int]' = None, base: 'Optional[float]' = None, axis: 'int' = 0, method: 'str' = 'auto') -> 'Union[np.number, np.ndarray]' Given a sample of a distribution, estimate the differential entropy. [extrait de differential_entropy.__doc__]
dirichlet(alpha, seed=None) A Dirichlet random variable. [extrait de __doc__]
dlaplace(*args, **kwds) A Laplacian discrete random variable. [extrait de __doc__]
dweibull(*args, **kwds) A double Weibull continuous random variable. [extrait de __doc__]
energy_distance(u_values, v_values, u_weights=None, v_weights=None) Compute the energy distance between two 1D distributions. [extrait de energy_distance.__doc__]
entropy(pk, qk=None, base=None, axis=0) Calculate the entropy of a distribution for given probability values. [extrait de entropy.__doc__]
epps_singleton_2samp(x, y, t=(0.4, 0.8)) Compute the Epps-Singleton (ES) test statistic. [extrait de epps_singleton_2samp.__doc__]
erlang(*args, **kwds) An Erlang continuous random variable. [extrait de __doc__]
expon(*args, **kwds) An exponential continuous random variable. [extrait de __doc__]
exponnorm(*args, **kwds) An exponentially modified Normal continuous random variable. [extrait de __doc__]
exponpow(*args, **kwds) An exponential power continuous random variable. [extrait de __doc__]
exponweib(*args, **kwds) An exponentiated Weibull continuous random variable. [extrait de __doc__]
f(*args, **kwds) An F continuous random variable. [extrait de __doc__]
f_oneway(*args, axis=0) Perform one-way ANOVA. [extrait de f_oneway.__doc__]
fatiguelife(*args, **kwds) A fatigue-life (Birnbaum-Saunders) continuous random variable. [extrait de __doc__]
find_repeats(arr) Find repeats and repeat counts. [extrait de find_repeats.__doc__]
fisher_exact(table, alternative='two-sided') Perform a Fisher exact test on a 2x2 contingency table. [extrait de fisher_exact.__doc__]
fisk(*args, **kwds) A Fisk continuous random variable. [extrait de __doc__]
fligner(*args, center='median', proportiontocut=0.05) Perform Fligner-Killeen test for equality of variance. [extrait de fligner.__doc__]
foldcauchy(*args, **kwds) A folded Cauchy continuous random variable. [extrait de __doc__]
foldnorm(*args, **kwds) A folded normal continuous random variable. [extrait de __doc__]
friedmanchisquare(*args) Compute the Friedman test for repeated measurements. [extrait de friedmanchisquare.__doc__]
gamma(*args, **kwds) A gamma continuous random variable. [extrait de __doc__]
gausshyper(*args, **kwds) A Gauss hypergeometric continuous random variable. [extrait de __doc__]
genexpon(*args, **kwds) A generalized exponential continuous random variable. [extrait de __doc__]
genextreme(*args, **kwds) A generalized extreme value continuous random variable. [extrait de __doc__]
gengamma(*args, **kwds) A generalized gamma continuous random variable. [extrait de __doc__]
genhalflogistic(*args, **kwds) A generalized half-logistic continuous random variable. [extrait de __doc__]
genhyperbolic(*args, **kwds) A generalized hyperbolic continuous random variable. [extrait de __doc__]
geninvgauss(*args, **kwds) A Generalized Inverse Gaussian continuous random variable. [extrait de __doc__]
genlogistic(*args, **kwds) A generalized logistic continuous random variable. [extrait de __doc__]
gennorm(*args, **kwds) A generalized normal continuous random variable. [extrait de __doc__]
genpareto(*args, **kwds) A generalized Pareto continuous random variable. [extrait de __doc__]
geom(*args, **kwds) A geometric discrete random variable. [extrait de __doc__]
gilbrat(*args, **kwds) A Gilbrat continuous random variable. [extrait de __doc__]
gmean(a, axis=0, dtype=None, weights=None) Compute the geometric mean along the specified axis. [extrait de gmean.__doc__]
gompertz(*args, **kwds) A Gompertz (or truncated Gumbel) continuous random variable. [extrait de __doc__]
gstd(a, axis=0, ddof=1)
gumbel_l(*args, **kwds) A left-skewed Gumbel continuous random variable. [extrait de __doc__]
gumbel_r(*args, **kwds) A right-skewed Gumbel continuous random variable. [extrait de __doc__]
halfcauchy(*args, **kwds) A Half-Cauchy continuous random variable. [extrait de __doc__]
halfgennorm(*args, **kwds) The upper half of a generalized normal continuous random variable. [extrait de __doc__]
halflogistic(*args, **kwds) A half-logistic continuous random variable. [extrait de __doc__]
halfnorm(*args, **kwds) A half-normal continuous random variable. [extrait de __doc__]
hmean(a, axis=0, dtype=None) Calculate the harmonic mean along the specified axis. [extrait de hmean.__doc__]
hypergeom(*args, **kwds) A hypergeometric discrete random variable. [extrait de __doc__]
hypsecant(*args, **kwds) A hyperbolic secant continuous random variable. [extrait de __doc__]
invgamma(*args, **kwds) An inverted gamma continuous random variable. [extrait de __doc__]
invgauss(*args, **kwds) An inverse Gaussian continuous random variable. [extrait de __doc__]
invweibull(*args, **kwds) An inverted Weibull continuous random variable. [extrait de __doc__]
invwishart(df=None, scale=None, seed=None) An inverse Wishart random variable. [extrait de __doc__]
iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate', interpolation='linear', keepdims=False)
itemfreq(*args, **kwds) `itemfreq` is deprecated! [extrait de itemfreq.__doc__]
jarque_bera(x) Perform the Jarque-Bera goodness of fit test on sample data. [extrait de jarque_bera.__doc__]
johnsonsb(*args, **kwds) A Johnson SB continuous random variable. [extrait de __doc__]
johnsonsu(*args, **kwds) A Johnson SU continuous random variable. [extrait de __doc__]
kappa3(*args, **kwds) Kappa 3 parameter distribution. [extrait de __doc__]
kappa4(*args, **kwds) Kappa 4 parameter distribution. [extrait de __doc__]
kendalltau(x, y, initial_lexsort=None, nan_policy='propagate', method='auto', variant='b') Calculate Kendall's tau, a correlation measure for ordinal data. [extrait de kendalltau.__doc__]
kruskal(*args, nan_policy='propagate') Compute the Kruskal-Wallis H-test for independent samples. [extrait de kruskal.__doc__]
ks_1samp(x, cdf, args=(), alternative='two-sided', mode='auto')
ks_2samp(data1, data2, alternative='two-sided', mode='auto')
ksone(*args, **kwds) Kolmogorov-Smirnov one-sided test statistic distribution. [extrait de __doc__]
kstat(data, n=2)
kstatvar(data, n=2) Return an unbiased estimator of the variance of the k-statistic. [extrait de kstatvar.__doc__]
kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='auto')
kstwo(*args, **kwds) Kolmogorov-Smirnov two-sided test statistic distribution. [extrait de __doc__]
kstwobign(*args, **kwds) Limiting distribution of scaled Kolmogorov-Smirnov two-sided test statistic. [extrait de __doc__]
kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate') Compute the kurtosis (Fisher or Pearson) of a dataset. [extrait de kurtosis.__doc__]
kurtosistest(a, axis=0, nan_policy='propagate', alternative='two-sided') Test whether a dataset has normal kurtosis. [extrait de kurtosistest.__doc__]
laplace(*args, **kwds) A Laplace continuous random variable. [extrait de __doc__]
laplace_asymmetric(*args, **kwds) An asymmetric Laplace continuous random variable. [extrait de __doc__]
levene(*args, center='median', proportiontocut=0.05) Perform Levene test for equal variances. [extrait de levene.__doc__]
levy(*args, **kwds) A Levy continuous random variable. [extrait de __doc__]
levy_l(*args, **kwds) A left-skewed Levy continuous random variable. [extrait de __doc__]
levy_stable(*args, **kwds) A Levy-stable continuous random variable. [extrait de __doc__]
linregress(x, y=None, alternative='two-sided')
loggamma(*args, **kwds) A log gamma continuous random variable. [extrait de __doc__]
logistic(*args, **kwds) A logistic (or Sech-squared) continuous random variable. [extrait de __doc__]
loglaplace(*args, **kwds) A log-Laplace continuous random variable. [extrait de __doc__]
lognorm(*args, **kwds) A lognormal continuous random variable. [extrait de __doc__]
logser(*args, **kwds) A Logarithmic (Log-Series, Series) discrete random variable. [extrait de __doc__]
loguniform(*args, **kwds) A loguniform or reciprocal continuous random variable. [extrait de __doc__]
lomax(*args, **kwds) A Lomax (Pareto of the second kind) continuous random variable. [extrait de __doc__]
mannwhitneyu(x, y, use_continuity=True, alternative='two-sided', axis=0, method='auto') Perform the Mann-Whitney U rank test on two independent samples. [extrait de mannwhitneyu.__doc__]
matrix_normal(mean=None, rowcov=1, colcov=1, seed=None) A matrix normal random variable. [extrait de __doc__]
maxwell(*args, **kwds) A Maxwell continuous random variable. [extrait de __doc__]
median_abs_deviation(x, axis=0, center=<function median at 0x7f5076a88f70>, scale=1.0, nan_policy='propagate')
median_absolute_deviation(*args, **kwds) `median_absolute_deviation` is deprecated, use `median_abs_deviation` instead! [extrait de median_absolute_deviation.__doc__]
median_test(*args, ties='below', correction=True, lambda_=1, nan_policy='propagate') Perform a Mood's median test. [extrait de median_test.__doc__]
mielke(*args, **kwds) A Mielke Beta-Kappa / Dagum continuous random variable. [extrait de __doc__]
mode(a, axis=0, nan_policy='propagate') Return an array of the modal (most common) value in the passed array. [extrait de mode.__doc__]
moment(a, moment=1, axis=0, nan_policy='propagate') Calculate the nth moment about the mean for a sample. [extrait de moment.__doc__]
mood(x, y, axis=0, alternative='two-sided') Perform Mood's test for equal scale parameters. [extrait de mood.__doc__]
moyal(*args, **kwds) A Moyal continuous random variable. [extrait de __doc__]
multinomial(n, p, seed=None) A multinomial random variable. [extrait de __doc__]
multiscale_graphcorr(x, y, compute_distance=<function _euclidean_dist at 0x7f505453aa60>, reps=1000, workers=1, is_twosamp=False, random_state=None) Computes the Multiscale Graph Correlation (MGC) test statistic. [extrait de multiscale_graphcorr.__doc__]
multivariate_hypergeom(m, n, seed=None) A multivariate hypergeometric random variable. [extrait de __doc__]
multivariate_normal(mean=None, cov=1, allow_singular=False, seed=None) A multivariate normal random variable. [extrait de __doc__]
multivariate_t(loc=None, shape=1, df=1, allow_singular=False, seed=None) A multivariate t-distributed random variable. [extrait de __doc__]
mvsdist(data)
nakagami(*args, **kwds) A Nakagami continuous random variable. [extrait de __doc__]
nbinom(*args, **kwds) A negative binomial discrete random variable. [extrait de __doc__]
ncf(*args, **kwds) A non-central F distribution continuous random variable. [extrait de __doc__]
nchypergeom_fisher(*args, **kwds) A Fisher's noncentral hypergeometric discrete random variable. [extrait de __doc__]
nchypergeom_wallenius(*args, **kwds) A Wallenius' noncentral hypergeometric discrete random variable. [extrait de __doc__]
nct(*args, **kwds) A non-central Student's t continuous random variable. [extrait de __doc__]
ncx2(*args, **kwds) A non-central chi-squared continuous random variable. [extrait de __doc__]
nhypergeom(*args, **kwds) A negative hypergeometric discrete random variable. [extrait de __doc__]
norm(*args, **kwds) A normal continuous random variable. [extrait de __doc__]
normaltest(a, axis=0, nan_policy='propagate') Test whether a sample differs from a normal distribution. [extrait de normaltest.__doc__]
norminvgauss(*args, **kwds) A Normal Inverse Gaussian continuous random variable. [extrait de __doc__]
obrientransform(*args) Compute the O'Brien transform on input data (any number of arrays). [extrait de obrientransform.__doc__]
page_trend_test(data, ranked=False, predicted_ranks=None, method='auto')
pareto(*args, **kwds) A Pareto continuous random variable. [extrait de __doc__]
pearson3(*args, **kwds) A pearson type III continuous random variable. [extrait de __doc__]
pearsonr(x, y)
percentileofscore(a, score, kind='rank') Compute the percentile rank of a score relative to a list of scores. [extrait de percentileofscore.__doc__]
planck(*args, **kwds) A Planck discrete exponential random variable. [extrait de __doc__]
pointbiserialr(x, y) Calculate a point biserial correlation coefficient and its p-value. [extrait de pointbiserialr.__doc__]
poisson(*args, **kwds) A Poisson discrete random variable. [extrait de __doc__]
power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None) Cressie-Read power divergence statistic and goodness of fit test. [extrait de power_divergence.__doc__]
powerlaw(*args, **kwds) A power-function continuous random variable. [extrait de __doc__]
powerlognorm(*args, **kwds) A power log-normal continuous random variable. [extrait de __doc__]
powernorm(*args, **kwds) A power normal continuous random variable. [extrait de __doc__]
ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda') Calculate the shape parameter that maximizes the PPCC. [extrait de ppcc_max.__doc__]
ppcc_plot(x, a, b, dist='tukeylambda', plot=None, N=80) Calculate and optionally plot probability plot correlation coefficient. [extrait de ppcc_plot.__doc__]
probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False)
randint(*args, **kwds) A uniform discrete random variable. [extrait de __doc__]
rankdata(a, method='average', *, axis=None) Assign ranks to data, dealing with ties appropriately. [extrait de rankdata.__doc__]
ranksums(x, y, alternative='two-sided') Compute the Wilcoxon rank-sum statistic for two samples. [extrait de ranksums.__doc__]
rayleigh(*args, **kwds) A Rayleigh continuous random variable. [extrait de __doc__]
rdist(*args, **kwds) An R-distributed (symmetric beta) continuous random variable. [extrait de __doc__]
recipinvgauss(*args, **kwds) A reciprocal inverse Gaussian continuous random variable. [extrait de __doc__]
reciprocal(*args, **kwds) A loguniform or reciprocal continuous random variable. [extrait de __doc__]
relfreq(a, numbins=10, defaultreallimits=None, weights=None) Return a relative frequency histogram, using the histogram function. [extrait de relfreq.__doc__]
rice(*args, **kwds) A Rice continuous random variable. [extrait de __doc__]
rvs_ratio_uniforms(pdf, umax, vmin, vmax, size=1, c=0, random_state=None)
scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None) Calculate the score at a given percentile of the input sequence. [extrait de scoreatpercentile.__doc__]
sem(a, axis=0, ddof=1, nan_policy='propagate') Compute standard error of the mean. [extrait de sem.__doc__]
semicircular(*args, **kwds) A semicircular continuous random variable. [extrait de __doc__]
shapiro(x) Perform the Shapiro-Wilk test for normality. [extrait de shapiro.__doc__]
siegelslopes(y, x=None, method='hierarchical')
sigmaclip(a, low=4.0, high=4.0) Perform iterative sigma-clipping of array elements. [extrait de sigmaclip.__doc__]
skellam(*args, **kwds) A Skellam discrete random variable. [extrait de __doc__]
skew(a, axis=0, bias=True, nan_policy='propagate') Compute the sample skewness of a data set. [extrait de skew.__doc__]
skewcauchy(*args, **kwds) A skewed Cauchy random variable. [extrait de __doc__]
skewnorm(*args, **kwds) A skew-normal random variable. [extrait de __doc__]
skewtest(a, axis=0, nan_policy='propagate', alternative='two-sided') Test whether the skew is different from the normal distribution. [extrait de skewtest.__doc__]
somersd(x, y=None) Calculates Somers' D, an asymmetric measure of ordinal association. [extrait de somersd.__doc__]
spearmanr(a, b=None, axis=0, nan_policy='propagate', alternative='two-sided') Calculate a Spearman correlation coefficient with associated p-value. [extrait de spearmanr.__doc__]
special_ortho_group(dim=None, seed=None) A matrix-valued SO(N) random variable. [extrait de __doc__]
studentized_range(*args, **kwds) A studentized range continuous random variable. [extrait de __doc__]
t(*args, **kwds) A Student's t continuous random variable. [extrait de __doc__]
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None)
theilslopes(y, x=None, alpha=0.95)
tiecorrect(rankvals) Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests. [extrait de tiecorrect.__doc__]
tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate') Compute the trimmed maximum. [extrait de tmax.__doc__]
tmean(a, limits=None, inclusive=(True, True), axis=None) Compute the trimmed mean. [extrait de tmean.__doc__]
tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate') Compute the trimmed minimum. [extrait de tmin.__doc__]
trapezoid(*args, **kwds) A trapezoidal continuous random variable. [extrait de __doc__]
trapz(*args, **kwds) trapz is an alias for `trapezoid` [extrait de __doc__]
triang(*args, **kwds) A triangular continuous random variable. [extrait de __doc__]
trim1(a, proportiontocut, tail='right', axis=0) Slice off a proportion from ONE end of the passed array distribution. [extrait de trim1.__doc__]
trim_mean(a, proportiontocut, axis=0) Return mean of array after trimming distribution from both tails. [extrait de trim_mean.__doc__]
trimboth(a, proportiontocut, axis=0) Slice off a proportion of items from both ends of an array. [extrait de trimboth.__doc__]
truncexpon(*args, **kwds) A truncated exponential continuous random variable. [extrait de __doc__]
truncnorm(*args, **kwds) A truncated normal continuous random variable. [extrait de __doc__]
tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1) Compute the trimmed standard error of the mean. [extrait de tsem.__doc__]
tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1) Compute the trimmed sample standard deviation. [extrait de tstd.__doc__]
ttest_1samp(a, popmean, axis=0, nan_policy='propagate', alternative='two-sided') Calculate the T-test for the mean of ONE group of scores. [extrait de ttest_1samp.__doc__]
ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate', permutations=None, random_state=None, alternative='two-sided', trim=0)
ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True, alternative='two-sided')
ttest_rel(a, b, axis=0, nan_policy='propagate', alternative='two-sided') Calculate the t-test on TWO RELATED samples of scores, a and b. [extrait de ttest_rel.__doc__]
tukeylambda(*args, **kwds) A Tukey-Lamdba continuous random variable. [extrait de __doc__]
tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1) Compute the trimmed variance. [extrait de tvar.__doc__]
uniform(*args, **kwds) A uniform continuous random variable. [extrait de __doc__]
variation(a, axis=0, nan_policy='propagate', ddof=0) Compute the coefficient of variation. [extrait de variation.__doc__]
vonmises(*args, **kwds) A Von Mises continuous random variable. [extrait de __doc__]
vonmises_line(*args, **kwds) A Von Mises continuous random variable. [extrait de __doc__]
wald(*args, **kwds) A Wald continuous random variable. [extrait de __doc__]
wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None)
weibull_max(*args, **kwds) Weibull maximum continuous random variable. [extrait de __doc__]
weibull_min(*args, **kwds) Weibull minimum continuous random variable. [extrait de __doc__]
weightedtau(x, y, rank=True, weigher=None, additive=True) Compute a weighted version of Kendall's :math:`\tau`. [extrait de weightedtau.__doc__]
wilcoxon(x, y=None, zero_method='wilcox', correction=False, alternative='two-sided', mode='auto') Calculate the Wilcoxon signed-rank test. [extrait de wilcoxon.__doc__]
wishart(df=None, scale=None, seed=None) A Wishart random variable. [extrait de __doc__]
wrapcauchy(*args, **kwds) A wrapped Cauchy continuous random variable. [extrait de __doc__]
yeojohnson(x, lmbda=None) Return a dataset transformed by a Yeo-Johnson power transformation. [extrait de yeojohnson.__doc__]
yeojohnson_llf(lmb, data) The yeojohnson log-likelihood function. [extrait de yeojohnson_llf.__doc__]
yeojohnson_normmax(x, brack=(-2, 2)) Compute optimal Yeo-Johnson transform parameter. [extrait de yeojohnson_normmax.__doc__]
yeojohnson_normplot(x, la, lb, plot=None, N=80) Compute parameters for a Yeo-Johnson normality plot, optionally show it. [extrait de yeojohnson_normplot.__doc__]
yulesimon(*args, **kwds) A Yule-Simon discrete random variable. [extrait de __doc__]
zipf(*args, **kwds) A Zipf (Zeta) discrete random variable. [extrait de __doc__]
zipfian(*args, **kwds) A Zipfian discrete random variable. [extrait de __doc__]
zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')
zscore(a, axis=0, ddof=0, nan_policy='propagate')

Liste des variables globales du module scipy.stats

Nom de la variable globale Valeur
ortho_group <scipy.stats._multivariate.ortho_group_gen object at 0x7f5053beafd0>
random_correlation <scipy.stats._multivariate.random_correlation_gen object at 0x7f5053bff100>
unitary_group <scipy.stats._multivariate.unitary_group_gen object at 0x7f5053bff1f0>