Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé

Contenu du module « scipy.stats »

Liste des classes du module scipy.stats

Nom de la classe Description
BootstrapMethod Configuration information for a bootstrap confidence interval. [extrait de BootstrapMethod.__doc__]
CensoredData
Covariance
gaussian_kde Representation of a kernel-density estimate using Gaussian kernels. [extrait de gaussian_kde.__doc__]
Mixture Representation of a mixture distribution. [extrait de Mixture.__doc__]
MonteCarloMethod Configuration information for a Monte Carlo hypothesis test. [extrait de MonteCarloMethod.__doc__]
Normal
PermutationMethod Configuration information for a permutation hypothesis test. [extrait de PermutationMethod.__doc__]
rv_continuous A generic continuous random variable class meant for subclassing. [extrait de rv_continuous.__doc__]
rv_discrete A generic discrete random variable class meant for subclassing. [extrait de rv_discrete.__doc__]
rv_histogram
Uniform

Liste des exceptions du module scipy.stats

Nom de la classe d'exception Description
ConstantInputWarning Warns when all values in data are exactly equal. [extrait de ConstantInputWarning.__doc__]
DegenerateDataWarning Warns when data is degenerate and results may not be reliable. [extrait de DegenerateDataWarning.__doc__]
FitError Represents an error condition when fitting a distribution to data. [extrait de FitError.__doc__]
NearConstantInputWarning Warns when all values in data are nearly equal. [extrait de NearConstantInputWarning.__doc__]

Liste des fonctions du module scipy.stats

Signature de la fonction Description
abs(X) Absolute value of a random variable [extrait de abs.__doc__]
alexandergovern(*samples, nan_policy='propagate', axis=0, keepdims=False)
alpha(*args, **kwds) An alpha continuous random variable. [extrait de __doc__]
anderson(x, dist='norm') Anderson-Darling test for data coming from a particular distribution. [extrait de anderson.__doc__]
anderson_ksamp(samples, midrank=True, *, method=None) The Anderson-Darling test for k-samples. [extrait de anderson_ksamp.__doc__]
anglit(*args, **kwds) An anglit continuous random variable. [extrait de __doc__]
ansari(x, y, alternative='two-sided', *, axis=0, nan_policy='propagate', keepdims=False)
arcsine(*args, **kwds) An arcsine continuous random variable. [extrait de __doc__]
argus(*args, **kwds)
barnard_exact(table, alternative='two-sided', pooled=True, n=32) Perform a Barnard exact test on a 2x2 contingency table. [extrait de barnard_exact.__doc__]
bartlett(*samples, axis=0, nan_policy='propagate', keepdims=False)
bayes_mvs(data, alpha=0.9)
bernoulli(*args, **kwds) A Bernoulli discrete random variable. [extrait de __doc__]
beta(*args, **kwds) A beta continuous random variable. [extrait de __doc__]
betabinom(*args, **kwds) A beta-binomial discrete random variable. [extrait de __doc__]
betanbinom(*args, **kwds) A beta-negative-binomial discrete random variable. [extrait de __doc__]
betaprime(*args, **kwds) A beta prime continuous random variable. [extrait de __doc__]
binned_statistic(x, values, statistic='mean', bins=10, range=None)
binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False)
binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None, expand_binnumbers=False, binned_statistic_result=None)
binom(*args, **kwds) A binomial discrete random variable. [extrait de __doc__]
binomtest(k, n, p=0.5, alternative='two-sided')
boltzmann(*args, **kwds) A Boltzmann (Truncated Discrete Exponential) random variable. [extrait de __doc__]
bootstrap(data, statistic, *, n_resamples=9999, batch=None, vectorized=None, paired=False, axis=0, confidence_level=0.95, alternative='two-sided', method='BCa', bootstrap_result=None, rng=None)
boschloo_exact(table, alternative='two-sided', n=32) Perform Boschloo's exact test on a 2x2 contingency table. [extrait de boschloo_exact.__doc__]
boxcox(x, lmbda=None, alpha=None, optimizer=None) Return a dataset transformed by a Box-Cox power transformation. [extrait de boxcox.__doc__]
boxcox_llf(lmb, data) The boxcox log-likelihood function. [extrait de boxcox_llf.__doc__]
boxcox_normmax(x, brack=None, method='pearsonr', optimizer=None, *, ymax=BIG_FLOAT) Compute optimal Box-Cox transform parameter for input data. [extrait de boxcox_normmax.__doc__]
boxcox_normplot(x, la, lb, plot=None, N=80) Compute parameters for a Box-Cox normality plot, optionally show it. [extrait de boxcox_normplot.__doc__]
bradford(*args, **kwds) A Bradford continuous random variable. [extrait de __doc__]
brunnermunzel(x, y, alternative='two-sided', distribution='t', nan_policy='propagate', *, axis=0, keepdims=False)
burr(*args, **kwds) A Burr (Type III) continuous random variable. [extrait de __doc__]
burr12(*args, **kwds) A Burr (Type XII) continuous random variable. [extrait de __doc__]
bws_test(x, y, *, alternative='two-sided', method=None) Perform the Baumgartner-Weiss-Schindler test on two independent samples. [extrait de bws_test.__doc__]
cauchy(*args, **kwds) A Cauchy continuous random variable. [extrait de __doc__]
chatterjeexi(x, y, *, axis=0, y_continuous=False, method='asymptotic', nan_policy='propagate', keepdims=False)
chi(*args, **kwds) A chi continuous random variable. [extrait de __doc__]
chi2(*args, **kwds) A chi-squared continuous random variable. [extrait de __doc__]
chi2_contingency(observed, correction=True, lambda_=None, *, method=None) Chi-square test of independence of variables in a contingency table. [extrait de chi2_contingency.__doc__]
chisquare(f_obs, f_exp=None, ddof=0, axis=0, *, sum_check=True) Perform Pearson's chi-squared test. [extrait de chisquare.__doc__]
circmean(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate', *, keepdims=False)
circstd(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate', *, normalize=False, keepdims=False)
circvar(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate', *, keepdims=False)
combine_pvalues(pvalues, method='fisher', weights=None, *, axis=0, nan_policy='propagate', keepdims=False)
cosine(*args, **kwds) A cosine continuous random variable. [extrait de __doc__]
cramervonmises(rvs, cdf, args=(), *, axis=0, nan_policy='propagate', keepdims=False)
cramervonmises_2samp(x, y, method='auto', *, axis=0, nan_policy='propagate', keepdims=False)
crystalball(*args, **kwds)
cumfreq(a, numbins=10, defaultreallimits=None, weights=None) Return a cumulative frequency histogram, using the histogram function. [extrait de cumfreq.__doc__]
describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate') Compute several descriptive statistics of the passed array. [extrait de describe.__doc__]
dgamma(*args, **kwds) A double gamma continuous random variable. [extrait de __doc__]
differential_entropy(values: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[bool | int | float | complex | str | bytes]], *, window_length: int | None = None, base: float | None = None, axis: int = 0, method: str = 'auto', nan_policy='propagate', keepdims=False) -> numpy.number | numpy.ndarray
directional_stats(samples, *, axis=0, normalize=True)
dirichlet(alpha, seed=None) A Dirichlet random variable. [extrait de __doc__]
dirichlet_multinomial(alpha, n, seed=None) A Dirichlet multinomial random variable. [extrait de __doc__]
dlaplace(*args, **kwds) A Laplacian discrete random variable. [extrait de __doc__]
dpareto_lognorm(*args, **kwds) A double Pareto lognormal continuous random variable. [extrait de __doc__]
dunnett(*samples: 'npt.ArrayLike', control: 'npt.ArrayLike', alternative: Literal['two-sided', 'less', 'greater'] = 'two-sided', rng: int | numpy.integer | numpy.random._generator.Generator | numpy.random.mtrand.RandomState | None = None) -> scipy.stats._multicomp.DunnettResult Dunnett's test: multiple comparisons of means against a control group. [extrait de dunnett.__doc__]
dweibull(*args, **kwds) A double Weibull continuous random variable. [extrait de __doc__]
ecdf(sample: 'npt.ArrayLike | CensoredData') -> scipy.stats._survival.ECDFResult Empirical cumulative distribution function of a sample. [extrait de ecdf.__doc__]
energy_distance(u_values, v_values, u_weights=None, v_weights=None) Compute the energy distance between two 1D distributions. [extrait de energy_distance.__doc__]
entropy(pk: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[bool | int | float | complex | str | bytes]], qk: Union[collections.abc.Buffer, numpy._typing._array_like._SupportsArray[numpy.dtype[Any]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype[Any]]], bool, int, float, complex, str, bytes, numpy._typing._nested_sequence._NestedSequence[bool | int | float | complex | str | bytes], NoneType] = None, base: float | None = None, axis: int = 0, *, nan_policy='propagate', keepdims=False) -> numpy.number | numpy.ndarray
epps_singleton_2samp(x, y, t=(0.4, 0.8), *, axis=0, nan_policy='propagate', keepdims=False)
erlang(*args, **kwds) An Erlang continuous random variable. [extrait de __doc__]
exp(X) Natural exponential of a random variable [extrait de exp.__doc__]
expectile(a, alpha=0.5, *, weights=None) Compute the expectile at the specified level. [extrait de expectile.__doc__]
expon(*args, **kwds) An exponential continuous random variable. [extrait de __doc__]
exponnorm(*args, **kwds) An exponentially modified Normal continuous random variable. [extrait de __doc__]
exponpow(*args, **kwds) An exponential power continuous random variable. [extrait de __doc__]
exponweib(*args, **kwds) An exponentiated Weibull continuous random variable. [extrait de __doc__]
f(*args, **kwds) An F continuous random variable. [extrait de __doc__]
f_oneway(*samples, axis=0, nan_policy='propagate', keepdims=False)
false_discovery_control(ps, *, axis=0, method='bh') Adjust p-values to control the false discovery rate. [extrait de false_discovery_control.__doc__]
fatiguelife(*args, **kwds) A fatigue-life (Birnbaum-Saunders) continuous random variable. [extrait de __doc__]
find_repeats(arr) Find repeats and repeat counts. [extrait de find_repeats.__doc__]
fisher_exact(table, alternative=None, *, method=None) Perform a Fisher exact test on a contingency table. [extrait de fisher_exact.__doc__]
fisk(*args, **kwds) A Fisk continuous random variable. [extrait de __doc__]
fit(dist, data, bounds=None, *, guess=None, method='mle', optimizer=<function differential_evolution at 0x0000020DFE609580>) Fit a discrete or continuous distribution to data [extrait de fit.__doc__]
fligner(*samples, center='median', proportiontocut=0.05, axis=0, nan_policy='propagate', keepdims=False)
foldcauchy(*args, **kwds) A folded Cauchy continuous random variable. [extrait de __doc__]
foldnorm(*args, **kwds) A folded normal continuous random variable. [extrait de __doc__]
friedmanchisquare(*samples, axis=0, nan_policy='propagate', keepdims=False)
gamma(*args, **kwds) A gamma continuous random variable. [extrait de __doc__]
gausshyper(*args, **kwds) A Gauss hypergeometric continuous random variable. [extrait de __doc__]
genexpon(*args, **kwds) A generalized exponential continuous random variable. [extrait de __doc__]
genextreme(*args, **kwds) A generalized extreme value continuous random variable. [extrait de __doc__]
gengamma(*args, **kwds) A generalized gamma continuous random variable. [extrait de __doc__]
genhalflogistic(*args, **kwds) A generalized half-logistic continuous random variable. [extrait de __doc__]
genhyperbolic(*args, **kwds) A generalized hyperbolic continuous random variable. [extrait de __doc__]
geninvgauss(*args, **kwds) A Generalized Inverse Gaussian continuous random variable. [extrait de __doc__]
genlogistic(*args, **kwds) A generalized logistic continuous random variable. [extrait de __doc__]
gennorm(*args, **kwds) A generalized normal continuous random variable. [extrait de __doc__]
genpareto(*args, **kwds) A generalized Pareto continuous random variable. [extrait de __doc__]
geom(*args, **kwds) A geometric discrete random variable. [extrait de __doc__]
gibrat(*args, **kwds) A Gibrat continuous random variable. [extrait de __doc__]
gmean(a, axis=0, dtype=None, weights=None, *, nan_policy='propagate', keepdims=False)
gompertz(*args, **kwds) A Gompertz (or truncated Gumbel) continuous random variable. [extrait de __doc__]
goodness_of_fit(dist, data, *, known_params=None, fit_params=None, guessed_params=None, statistic='ad', n_mc_samples=9999, rng=None)
gstd(a, axis=0, ddof=1)
gumbel_l(*args, **kwds) A left-skewed Gumbel continuous random variable. [extrait de __doc__]
gumbel_r(*args, **kwds) A right-skewed Gumbel continuous random variable. [extrait de __doc__]
gzscore(a, *, axis=0, ddof=0, nan_policy='propagate')
halfcauchy(*args, **kwds) A Half-Cauchy continuous random variable. [extrait de __doc__]
halfgennorm(*args, **kwds) The upper half of a generalized normal continuous random variable. [extrait de __doc__]
halflogistic(*args, **kwds) A half-logistic continuous random variable. [extrait de __doc__]
halfnorm(*args, **kwds) A half-normal continuous random variable. [extrait de __doc__]
hmean(a, axis=0, dtype=None, *, weights=None, nan_policy='propagate', keepdims=False)
hypergeom(*args, **kwds) A hypergeometric discrete random variable. [extrait de __doc__]
hypsecant(*args, **kwds) A hyperbolic secant continuous random variable. [extrait de __doc__]
invgamma(*args, **kwds) An inverted gamma continuous random variable. [extrait de __doc__]
invgauss(*args, **kwds) An inverse Gaussian continuous random variable. [extrait de __doc__]
invweibull(*args, **kwds) An inverted Weibull continuous random variable. [extrait de __doc__]
invwishart(df=None, scale=None, seed=None) An inverse Wishart random variable. [extrait de __doc__]
iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate', interpolation='linear', keepdims=False)
irwinhall(*args, **kwds) An Irwin-Hall (Uniform Sum) continuous random variable. [extrait de __doc__]
jarque_bera(x, *, axis=None, nan_policy='propagate', keepdims=False)
jf_skew_t(*args, **kwds) Jones and Faddy skew-t distribution. [extrait de __doc__]
johnsonsb(*args, **kwds) A Johnson SB continuous random variable. [extrait de __doc__]
johnsonsu(*args, **kwds) A Johnson SU continuous random variable. [extrait de __doc__]
kappa3(*args, **kwds) Kappa 3 parameter distribution. [extrait de __doc__]
kappa4(*args, **kwds) Kappa 4 parameter distribution. [extrait de __doc__]
kendalltau(x, y, *, nan_policy='propagate', method='auto', variant='b', alternative='two-sided') Calculate Kendall's tau, a correlation measure for ordinal data. [extrait de kendalltau.__doc__]
kruskal(*samples, nan_policy='propagate', axis=0, keepdims=False)
ks_1samp(x, cdf, args=(), alternative='two-sided', method='auto', *, axis=0, nan_policy='propagate', keepdims=False)
ks_2samp(data1, data2, alternative='two-sided', method='auto', *, axis=0, nan_policy='propagate', keepdims=False)
ksone(*args, **kwds) Kolmogorov-Smirnov one-sided test statistic distribution. [extrait de __doc__]
kstat(data, n=2, *, axis=None, nan_policy='propagate', keepdims=False)
kstatvar(data, n=2, *, axis=None, nan_policy='propagate', keepdims=False)
kstest(rvs, cdf, args=(), N=20, alternative='two-sided', method='auto', *, axis=0, nan_policy='propagate', keepdims=False)
kstwo(*args, **kwds) Kolmogorov-Smirnov two-sided test statistic distribution. [extrait de __doc__]
kstwobign(*args, **kwds) Limiting distribution of scaled Kolmogorov-Smirnov two-sided test statistic. [extrait de __doc__]
kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate', *, keepdims=False)
kurtosistest(a, axis=0, nan_policy='propagate', alternative='two-sided', *, keepdims=False)
landau(*args, **kwds) A Landau continuous random variable. [extrait de __doc__]
laplace(*args, **kwds) A Laplace continuous random variable. [extrait de __doc__]
laplace_asymmetric(*args, **kwds) An asymmetric Laplace continuous random variable. [extrait de __doc__]
levene(*samples, center='median', proportiontocut=0.05, axis=0, nan_policy='propagate', keepdims=False)
levy(*args, **kwds) A Levy continuous random variable. [extrait de __doc__]
levy_l(*args, **kwds) A left-skewed Levy continuous random variable. [extrait de __doc__]
levy_stable(*args, **params) A Levy-stable continuous random variable. [extrait de __doc__]
linregress(x, y=None, alternative='two-sided')
lmoment(sample, order=None, *, axis=0, sorted=False, standardize=True, nan_policy='propagate', keepdims=False)
log(X) Natural logarithm of a non-negative random variable [extrait de log.__doc__]
loggamma(*args, **kwds) A log gamma continuous random variable. [extrait de __doc__]
logistic(*args, **kwds) A logistic (or Sech-squared) continuous random variable. [extrait de __doc__]
loglaplace(*args, **kwds) A log-Laplace continuous random variable. [extrait de __doc__]
lognorm(*args, **kwds) A lognormal continuous random variable. [extrait de __doc__]
logrank(x: 'npt.ArrayLike | CensoredData', y: 'npt.ArrayLike | CensoredData', alternative: Literal['two-sided', 'less', 'greater'] = 'two-sided') -> scipy.stats._survival.LogRankResult Compare the survival distributions of two samples via the logrank test. [extrait de logrank.__doc__]
logser(*args, **kwds) A Logarithmic (Log-Series, Series) discrete random variable. [extrait de __doc__]
loguniform(*args, **kwds) A loguniform or reciprocal continuous random variable. [extrait de __doc__]
lomax(*args, **kwds) A Lomax (Pareto of the second kind) continuous random variable. [extrait de __doc__]
make_distribution(dist) Generate a `ContinuousDistribution` from an instance of `rv_continuous` [extrait de make_distribution.__doc__]
mannwhitneyu(x, y, use_continuity=True, alternative='two-sided', axis=0, method='auto', *, nan_policy='propagate', keepdims=False)
matrix_normal(mean=None, rowcov=1, colcov=1, seed=None) A matrix normal random variable. [extrait de __doc__]
maxwell(*args, **kwds) A Maxwell continuous random variable. [extrait de __doc__]
median_abs_deviation(x, axis=0, center=<function median at 0x0000020DE8B2F2B0>, scale=1.0, nan_policy='propagate')
median_test(*samples, ties='below', correction=True, lambda_=1, nan_policy='propagate') Perform a Mood's median test. [extrait de median_test.__doc__]
mielke(*args, **kwds) A Mielke Beta-Kappa / Dagum continuous random variable. [extrait de __doc__]
mode(a, axis=0, nan_policy='propagate', keepdims=False)
moment(a, order=1, axis=0, nan_policy='propagate', *, center=None, keepdims=False)
monte_carlo_test(data, rvs, statistic, *, vectorized=None, n_resamples=9999, batch=None, alternative='two-sided', axis=0) Perform a Monte Carlo hypothesis test. [extrait de monte_carlo_test.__doc__]
mood(x, y, axis=0, alternative='two-sided', *, nan_policy='propagate', keepdims=False)
moyal(*args, **kwds) A Moyal continuous random variable. [extrait de __doc__]
multinomial(n, p, seed=None) A multinomial random variable. [extrait de __doc__]
multiscale_graphcorr(x, y, compute_distance=<function _euclidean_dist at 0x0000020D9A0556C0>, reps=1000, workers=1, is_twosamp=False, random_state=None) Computes the Multiscale Graph Correlation (MGC) test statistic. [extrait de multiscale_graphcorr.__doc__]
multivariate_hypergeom(m, n, seed=None) A multivariate hypergeometric random variable. [extrait de __doc__]
multivariate_normal(mean=None, cov=1, allow_singular=False, seed=None) A multivariate normal random variable. [extrait de __doc__]
multivariate_t(loc=None, shape=1, df=1, allow_singular=False, seed=None) A multivariate t-distributed random variable. [extrait de __doc__]
mvsdist(data)
nakagami(*args, **kwds) A Nakagami continuous random variable. [extrait de __doc__]
nbinom(*args, **kwds) A negative binomial discrete random variable. [extrait de __doc__]
ncf(*args, **kwds) A non-central F distribution continuous random variable. [extrait de __doc__]
nchypergeom_fisher(*args, **kwds) A Fisher's noncentral hypergeometric discrete random variable. [extrait de __doc__]
nchypergeom_wallenius(*args, **kwds) A Wallenius' noncentral hypergeometric discrete random variable. [extrait de __doc__]
nct(*args, **kwds) A non-central Student's t continuous random variable. [extrait de __doc__]
ncx2(*args, **kwds) A non-central chi-squared continuous random variable. [extrait de __doc__]
nhypergeom(*args, **kwds) A negative hypergeometric discrete random variable. [extrait de __doc__]
norm(*args, **kwds) A normal continuous random variable. [extrait de __doc__]
normal_inverse_gamma(mu=0, lmbda=1, a=1, b=1, seed=None) Normal-inverse-gamma distribution. [extrait de __doc__]
normaltest(a, axis=0, nan_policy='propagate', *, keepdims=False)
norminvgauss(*args, **kwds) A Normal Inverse Gaussian continuous random variable. [extrait de __doc__]
obrientransform(*samples) Compute the O'Brien transform on input data (any number of arrays). [extrait de obrientransform.__doc__]
order_statistic(X, /, *, r, n) Probability distribution of an order statistic [extrait de order_statistic.__doc__]
ortho_group(dim=None, seed=None) An Orthogonal matrix (O(N)) random variable. [extrait de __doc__]
page_trend_test(data, ranked=False, predicted_ranks=None, method='auto')
pareto(*args, **kwds) A Pareto continuous random variable. [extrait de __doc__]
pearson3(*args, **kwds) A pearson type III continuous random variable. [extrait de __doc__]
pearsonr(x, y, *, alternative='two-sided', method=None, axis=0)
percentileofscore(a, score, kind='rank', nan_policy='propagate') Compute the percentile rank of a score relative to a list of scores. [extrait de percentileofscore.__doc__]
permutation_test(data, statistic, *, permutation_type='independent', vectorized=None, n_resamples=9999, batch=None, alternative='two-sided', axis=0, rng=None)
planck(*args, **kwds) A Planck discrete exponential random variable. [extrait de __doc__]
pmean(a, p, *, axis=0, dtype=None, weights=None, nan_policy='propagate', keepdims=False)
pointbiserialr(x, y) Calculate a point biserial correlation coefficient and its p-value. [extrait de pointbiserialr.__doc__]
poisson(*args, **kwds) A Poisson discrete random variable. [extrait de __doc__]
poisson_binom(*args, **kwds) A Poisson Binomial discrete random variable. [extrait de __doc__]
poisson_means_test(k1, n1, k2, n2, *, diff=0, alternative='two-sided')
power(test, rvs, n_observations, *, significance=0.01, vectorized=None, n_resamples=10000, batch=None, kwargs=None) Simulate the power of a hypothesis test under an alternative hypothesis. [extrait de power.__doc__]
power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None) Cressie-Read power divergence statistic and goodness of fit test. [extrait de power_divergence.__doc__]
powerlaw(*args, **kwds) A power-function continuous random variable. [extrait de __doc__]
powerlognorm(*args, **kwds) A power log-normal continuous random variable. [extrait de __doc__]
powernorm(*args, **kwds) A power normal continuous random variable. [extrait de __doc__]
ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda') Calculate the shape parameter that maximizes the PPCC. [extrait de ppcc_max.__doc__]
ppcc_plot(x, a, b, dist='tukeylambda', plot=None, N=80) Calculate and optionally plot probability plot correlation coefficient. [extrait de ppcc_plot.__doc__]
probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False)
quantile_test(x, *, q=0, p=0.5, alternative='two-sided')
randint(*args, **kwds) A uniform discrete random variable. [extrait de __doc__]
random_correlation(eigs, seed=None, tol=1e-13, diag_tol=1e-07) A random correlation matrix. [extrait de __doc__]
random_table(row, col, *, seed=None) Contingency tables from independent samples with fixed marginal sums. [extrait de __doc__]
rankdata(a, method='average', *, axis=None, nan_policy='propagate') Assign ranks to data, dealing with ties appropriately. [extrait de rankdata.__doc__]
ranksums(x, y, alternative='two-sided', *, axis=0, nan_policy='propagate', keepdims=False)
rayleigh(*args, **kwds) A Rayleigh continuous random variable. [extrait de __doc__]
rdist(*args, **kwds) An R-distributed (symmetric beta) continuous random variable. [extrait de __doc__]
recipinvgauss(*args, **kwds) A reciprocal inverse Gaussian continuous random variable. [extrait de __doc__]
reciprocal(*args, **kwds) A loguniform or reciprocal continuous random variable. [extrait de __doc__]
rel_breitwigner(*args, **kwds) A relativistic Breit-Wigner random variable. [extrait de __doc__]
relfreq(a, numbins=10, defaultreallimits=None, weights=None) Return a relative frequency histogram, using the histogram function. [extrait de relfreq.__doc__]
rice(*args, **kwds) A Rice continuous random variable. [extrait de __doc__]
scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None) Calculate the score at a given percentile of the input sequence. [extrait de scoreatpercentile.__doc__]
sem(a, axis=0, ddof=1, nan_policy='propagate', *, keepdims=False)
semicircular(*args, **kwds) A semicircular continuous random variable. [extrait de __doc__]
shapiro(x, *, axis=None, nan_policy='propagate', keepdims=False)
siegelslopes(y, x=None, method='hierarchical')
sigmaclip(a, low=4.0, high=4.0) Perform iterative sigma-clipping of array elements. [extrait de sigmaclip.__doc__]
skellam(*args, **kwds) A Skellam discrete random variable. [extrait de __doc__]
skew(a, axis=0, bias=True, nan_policy='propagate', *, keepdims=False)
skewcauchy(*args, **kwds) A skewed Cauchy random variable. [extrait de __doc__]
skewnorm(*args, **kwds) A skew-normal random variable. [extrait de __doc__]
skewtest(a, axis=0, nan_policy='propagate', alternative='two-sided', *, keepdims=False)
sobol_indices(*, func, n, dists=None, method='saltelli_2010', rng=None) Global sensitivity indices of Sobol'. [extrait de sobol_indices.__doc__]
somersd(x, y=None, alternative='two-sided') Calculates Somers' D, an asymmetric measure of ordinal association. [extrait de somersd.__doc__]
spearmanr(a, b=None, axis=0, nan_policy='propagate', alternative='two-sided') Calculate a Spearman correlation coefficient with associated p-value. [extrait de spearmanr.__doc__]
special_ortho_group(dim=None, seed=None) A Special Orthogonal matrix (SO(N)) random variable. [extrait de __doc__]
studentized_range(*args, **kwds) A studentized range continuous random variable. [extrait de __doc__]
t(*args, **kwds) A Student's t continuous random variable. [extrait de __doc__]
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None)
theilslopes(y, x=None, alpha=0.95, method='separate')
tiecorrect(rankvals) Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests. [extrait de tiecorrect.__doc__]
tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate', *, keepdims=False)
tmean(a, limits=None, inclusive=(True, True), axis=None, *, nan_policy='propagate', keepdims=False)
tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate', *, keepdims=False)
trapezoid(*args, **kwds) A trapezoidal continuous random variable. [extrait de __doc__]
trapz(*args, **kwds)
triang(*args, **kwds) A triangular continuous random variable. [extrait de __doc__]
trim1(a, proportiontocut, tail='right', axis=0) Slice off a proportion from ONE end of the passed array distribution. [extrait de trim1.__doc__]
trim_mean(a, proportiontocut, axis=0) Return mean of array after trimming a specified fraction of extreme values [extrait de trim_mean.__doc__]
trimboth(a, proportiontocut, axis=0) Slice off a proportion of items from both ends of an array. [extrait de trimboth.__doc__]
truncate(X, lb=-inf, ub=inf) Truncate the support of a random variable. [extrait de truncate.__doc__]
truncexpon(*args, **kwds) A truncated exponential continuous random variable. [extrait de __doc__]
truncnorm(*args, **kwds) A truncated normal continuous random variable. [extrait de __doc__]
truncpareto(*args, **kwds) An upper truncated Pareto continuous random variable. [extrait de __doc__]
truncweibull_min(*args, **kwds) A doubly truncated Weibull minimum continuous random variable. [extrait de __doc__]
tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1, *, nan_policy='propagate', keepdims=False)
tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1, *, nan_policy='propagate', keepdims=False)
ttest_1samp(a, popmean, axis=0, nan_policy='propagate', alternative='two-sided', *, keepdims=False)
ttest_ind(a, b, *, axis=0, equal_var=True, nan_policy='propagate', permutations=None, random_state=None, alternative='two-sided', trim=0, method=None, keepdims=False)
ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True, alternative='two-sided')
ttest_rel(a, b, axis=0, nan_policy='propagate', alternative='two-sided', *, keepdims=False)
tukey_hsd(*args) Perform Tukey's HSD test for equality of means over multiple treatments. [extrait de tukey_hsd.__doc__]
tukeylambda(*args, **kwds) A Tukey-Lamdba continuous random variable. [extrait de __doc__]
tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1, *, nan_policy='propagate', keepdims=False)
uniform(*args, **kwds) A uniform continuous random variable. [extrait de __doc__]
uniform_direction(dim=None, seed=None) A vector-valued uniform direction. [extrait de __doc__]
unitary_group(dim=None, seed=None) A matrix-valued U(N) random variable. [extrait de __doc__]
variation(a, axis=0, nan_policy='propagate', ddof=0, *, keepdims=False)
vonmises(*args, **kwds) A Von Mises continuous random variable. [extrait de __doc__]
vonmises_fisher(mu=None, kappa=1, seed=None) A von Mises-Fisher variable. [extrait de __doc__]
vonmises_line(*args, **kwds) A Von Mises continuous random variable. [extrait de __doc__]
wald(*args, **kwds) A Wald continuous random variable. [extrait de __doc__]
wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None)
wasserstein_distance_nd(u_values, v_values, u_weights=None, v_weights=None)
weibull_max(*args, **kwds) Weibull maximum continuous random variable. [extrait de __doc__]
weibull_min(*args, **kwds) Weibull minimum continuous random variable. [extrait de __doc__]
weightedtau(x, y, rank=True, weigher=None, additive=True) Compute a weighted version of Kendall's :math:`\tau`. [extrait de weightedtau.__doc__]
wilcoxon(x, y=None, zero_method='wilcox', correction=False, alternative='two-sided', method='auto', *, axis=0, nan_policy='propagate', keepdims=False)
wishart(df=None, scale=None, seed=None) A Wishart random variable. [extrait de __doc__]
wrapcauchy(*args, **kwds) A wrapped Cauchy continuous random variable. [extrait de __doc__]
yeojohnson(x, lmbda=None) Return a dataset transformed by a Yeo-Johnson power transformation. [extrait de yeojohnson.__doc__]
yeojohnson_llf(lmb, data) The yeojohnson log-likelihood function. [extrait de yeojohnson_llf.__doc__]
yeojohnson_normmax(x, brack=None) Compute optimal Yeo-Johnson transform parameter. [extrait de yeojohnson_normmax.__doc__]
yeojohnson_normplot(x, la, lb, plot=None, N=80) Compute parameters for a Yeo-Johnson normality plot, optionally show it. [extrait de yeojohnson_normplot.__doc__]
yulesimon(*args, **kwds) A Yule-Simon discrete random variable. [extrait de __doc__]
zipf(*args, **kwds) A Zipf (Zeta) discrete random variable. [extrait de __doc__]
zipfian(*args, **kwds) A Zipfian discrete random variable. [extrait de __doc__]
zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')
zscore(a, axis=0, ddof=0, nan_policy='propagate')


Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé