Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.stats »
Classe « Normal »
Informations générales
Héritage
builtins.object
ABC
_ProbabilityDistribution
ContinuousDistribution
Normal
Définition
class Normal(ContinuousDistribution):
help(Normal)
Normal distribution with prescribed mean and standard deviation.
The probability density function of the normal distribution is:
.. math::
f(x) = \frac{1}{\sigma \sqrt{2 \pi}} \exp {
\left( -\frac{1}{2}\left( \frac{x - \mu}{\sigma} \right)^2 \right)}
for :math:`x` in (-\infty, \infty).
This class accepts one parameterization:
`mu` for :math:`\mu \in (-\infty, \infty)`, `sigma` for :math:`\sigma \in (0, \infty)`.
Parameters
----------
tol : positive float, optional
The desired relative tolerance of calculations. Left unspecified,
calculations may be faster; when provided, calculations may be
more likely to meet the desired accuracy.
validation_policy : {None, "skip_all"}
Specifies the level of input validation to perform. Left unspecified,
input validation is performed to ensure appropriate behavior in edge
case (e.g. parameters out of domain, argument outside of distribution
support, etc.) and improve consistency of output dtype, shape, etc.
Pass ``'skip_all'`` to avoid the computational overhead of these
checks when rough edges are acceptable.
cache_policy : {None, "no_cache"}
Specifies the extent to which intermediate results are cached. Left
unspecified, intermediate results of some calculations (e.g. distribution
support, moments, etc.) are cached to improve performance of future
calculations. Pass ``'no_cache'`` to reduce memory reserved by the class
instance.
Attributes
----------
All parameters are available as attributes.
Methods
-------
support
plot
sample
moment
mean
median
mode
variance
standard_deviation
skewness
kurtosis
pdf
logpdf
cdf
icdf
ccdf
iccdf
logcdf
ilogcdf
logccdf
ilogccdf
entropy
logentropy
See Also
--------
:ref:`rv_infrastructure`
Tutorial
Notes
-----
The following abbreviations are used throughout the documentation.
- PDF: probability density function
- CDF: cumulative distribution function
- CCDF: complementary CDF
- entropy: differential entropy
- log-*F*: logarithm of *F* (e.g. log-CDF)
- inverse *F*: inverse function of *F* (e.g. inverse CDF)
The API documentation is written to describe the API, not to serve as
a statistical reference. Effort is made to be correct at the level
required to use the functionality, not to be mathematically rigorous.
For example, continuity and differentiability may be implicitly assumed.
For precise mathematical definitions, consult your preferred mathematical
text.
Examples
--------
To use the distribution class, it must be instantiated using keyword
parameters corresponding with one of the accepted parameterizations.
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> from scipy.stats import Normal
>>> X = Normal(mu=-0.81, sigma=0.69)
For convenience, the ``plot`` method can be used to visualize the density
and other functions of the distribution.
>>> X.plot()
>>> plt.show()
The support of the underlying distribution is available using the ``support``
method.
>>> X.support()
(np.float64(-inf), np.float64(inf))
The numerical values of parameters associated with all parameterizations
are available as attributes.
>>> X.mu, X.sigma
(np.float64(-0.81), np.float64(0.69))
To evaluate the probability density function of the underlying distribution
at argument ``x=-1.13``:
>>> x = -1.13
>>> X.pdf(x)
0.5192263911374636
The cumulative distribution function, its complement, and the logarithm
of these functions are evaluated similarly.
>>> np.allclose(np.exp(X.logccdf(x)), 1 - X.cdf(x))
True
The inverse of these functions with respect to the argument ``x`` is also
available.
>>> logp = np.log(1 - X.ccdf(x))
>>> np.allclose(X.ilogcdf(logp), x)
True
Note that distribution functions and their logarithms also have two-argument
versions for working with the probability mass between two arguments. The
result tends to be more accurate than the naive implementation because it avoids
subtractive cancellation.
>>> y = -0.56
>>> np.allclose(X.ccdf(x, y), 1 - (X.cdf(y) - X.cdf(x)))
True
There are methods for computing measures of central tendency,
dispersion, higher moments, and entropy.
>>> X.mean(), X.median(), X.mode()
(np.float64(-0.81), np.float64(-0.81), np.float64(-0.81))
>>> X.variance(), X.standard_deviation()
(np.float64(0.4760999999999999), np.float64(0.69))
>>> X.skewness(), X.kurtosis()
(np.float64(0.0), np.float64(3.0))
>>> np.allclose(X.moment(order=6, kind='standardized'),
... X.moment(order=6, kind='central') / X.variance()**3)
True
>>> np.allclose(np.exp(X.logentropy()), X.entropy())
True
Pseudo-random samples can be drawn from
the underlying distribution using ``sample``.
>>> X.sample(shape=(4,))
array([-1.55728866, -1.31762486, -1.44864984, -0.31803793]) # may vary
Constructeur(s)
Liste des propriétés
cache_policy | {None, "no_cache"}: [extrait de cache_policy.__doc__] |
mu | |
sigma | |
tol | positive float: [extrait de tol.__doc__] |
validation_policy | {None, "skip_all"}: [extrait de validation_policy.__doc__] |
Liste des opérateurs
Opérateurs hérités de la classe ContinuousDistribution
__add__, __mul__, __neg__, __pow__, __radd__, __rmul__, __rpow__, __rsub__, __rtruediv__, __sub__, __truediv__
Liste des opérateurs
Opérateurs hérités de la classe object
__eq__,
__ge__,
__gt__,
__le__,
__lt__,
__ne__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
Méthodes héritées de la classe ContinuousDistribution
__abs__, __init_subclass__, __repr__, __str__, __subclasshook__, ccdf, cdf, entropy, iccdf, icdf, ilogccdf, ilogcdf, kurtosis, logccdf, logcdf, logentropy, logpdf, mean, median, mode, moment, pdf, plot, reset_cache, sample, skewness, standard_deviation, support, variance
Méthodes héritées de la classe object
__delattr__,
__dir__,
__format__,
__getattribute__,
__getstate__,
__hash__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :