Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction pearson3
def pearson3(*args, **kwds)
Description
help(scipy.stats.pearson3)
A pearson type III continuous random variable.
As an instance of the `rv_continuous` class, `pearson3` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(skew, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, skew, loc=0, scale=1)
Probability density function.
logpdf(x, skew, loc=0, scale=1)
Log of the probability density function.
cdf(x, skew, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, skew, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, skew, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, skew, loc=0, scale=1)
Log of the survival function.
ppf(q, skew, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, skew, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(order, skew, loc=0, scale=1)
Non-central moment of the specified order.
stats(skew, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(skew, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(skew,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(skew, loc=0, scale=1)
Median of the distribution.
mean(skew, loc=0, scale=1)
Mean of the distribution.
var(skew, loc=0, scale=1)
Variance of the distribution.
std(skew, loc=0, scale=1)
Standard deviation of the distribution.
interval(confidence, skew, loc=0, scale=1)
Confidence interval with equal areas around the median.
Notes
-----
The probability density function for `pearson3` is:
.. math::
f(x, \kappa) = \frac{|\beta|}{\Gamma(\alpha)}
(\beta (x - \zeta))^{\alpha - 1}
\exp(-\beta (x - \zeta))
where:
.. math::
\beta = \frac{2}{\kappa}
\alpha = \beta^2 = \frac{4}{\kappa^2}
\zeta = -\frac{\alpha}{\beta} = -\beta
:math:`\Gamma` is the gamma function (`scipy.special.gamma`).
Pass the skew :math:`\kappa` into `pearson3` as the shape parameter
``skew``.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``pearson3.pdf(x, skew, loc, scale)`` is identically
equivalent to ``pearson3.pdf(y, skew) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import pearson3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> skew = -2
>>> mean, var, skew, kurt = pearson3.stats(skew, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(pearson3.ppf(0.01, skew),
... pearson3.ppf(0.99, skew), 100)
>>> ax.plot(x, pearson3.pdf(x, skew),
... 'r-', lw=5, alpha=0.6, label='pearson3 pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = pearson3(skew)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = pearson3.ppf([0.001, 0.5, 0.999], skew)
>>> np.allclose([0.001, 0.5, 0.999], pearson3.cdf(vals, skew))
True
Generate random numbers:
>>> r = pearson3.rvs(skew, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
References
----------
R.W. Vogel and D.E. McMartin, "Probability Plot Goodness-of-Fit and
Skewness Estimation Procedures for the Pearson Type 3 Distribution", Water
Resources Research, Vol.27, 3149-3158 (1991).
L.R. Salvosa, "Tables of Pearson's Type III Function", Ann. Math. Statist.,
Vol.1, 191-198 (1930).
"Using Modern Computing Tools to Fit the Pearson Type III Distribution to
Aviation Loads Data", Office of Aviation Research (2003).
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :