Module « scipy.stats »
Signature de la fonction yulesimon
def yulesimon(*args, **kwds)
Description
yulesimon.__doc__
A Yule-Simon discrete random variable.
As an instance of the `rv_discrete` class, `yulesimon` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(alpha, loc=0, size=1, random_state=None)
Random variates.
pmf(k, alpha, loc=0)
Probability mass function.
logpmf(k, alpha, loc=0)
Log of the probability mass function.
cdf(k, alpha, loc=0)
Cumulative distribution function.
logcdf(k, alpha, loc=0)
Log of the cumulative distribution function.
sf(k, alpha, loc=0)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(k, alpha, loc=0)
Log of the survival function.
ppf(q, alpha, loc=0)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, alpha, loc=0)
Inverse survival function (inverse of ``sf``).
stats(alpha, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(alpha, loc=0)
(Differential) entropy of the RV.
expect(func, args=(alpha,), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(alpha, loc=0)
Median of the distribution.
mean(alpha, loc=0)
Mean of the distribution.
var(alpha, loc=0)
Variance of the distribution.
std(alpha, loc=0)
Standard deviation of the distribution.
interval(alpha, alpha, loc=0)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability mass function for the `yulesimon` is:
.. math::
f(k) = \alpha B(k, \alpha+1)
for :math:`k=1,2,3,...`, where :math:`\alpha>0`.
Here :math:`B` refers to the `scipy.special.beta` function.
The sampling of random variates is based on pg 553, Section 6.3 of [1]_.
Our notation maps to the referenced logic via :math:`\alpha=a-1`.
For details see the wikipedia entry [2]_.
References
----------
.. [1] Devroye, Luc. "Non-uniform Random Variate Generation",
(1986) Springer, New York.
.. [2] https://en.wikipedia.org/wiki/Yule-Simon_distribution
The probability mass function above is defined in the "standardized" form.
To shift distribution use the ``loc`` parameter.
Specifically, ``yulesimon.pmf(k, alpha, loc)`` is identically
equivalent to ``yulesimon.pmf(k - loc, alpha)``.
Examples
--------
>>> from scipy.stats import yulesimon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> alpha = 11
>>> mean, var, skew, kurt = yulesimon.stats(alpha, moments='mvsk')
Display the probability mass function (``pmf``):
>>> x = np.arange(yulesimon.ppf(0.01, alpha),
... yulesimon.ppf(0.99, alpha))
>>> ax.plot(x, yulesimon.pmf(x, alpha), 'bo', ms=8, label='yulesimon pmf')
>>> ax.vlines(x, 0, yulesimon.pmf(x, alpha), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function)
to fix the shape and location. This returns a "frozen" RV object holding
the given parameters fixed.
Freeze the distribution and display the frozen ``pmf``:
>>> rv = yulesimon(alpha)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Check accuracy of ``cdf`` and ``ppf``:
>>> prob = yulesimon.cdf(x, alpha)
>>> np.allclose(x, yulesimon.ppf(prob, alpha))
True
Generate random numbers:
>>> r = yulesimon.rvs(alpha, size=1000)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :