Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction multivariate_hypergeom - module scipy.stats

Signature de la fonction multivariate_hypergeom

def multivariate_hypergeom(m, n, seed=None) 

Description

multivariate_hypergeom.__doc__

A multivariate hypergeometric random variable.

    Methods
    -------
    ``pmf(x, m, n)``
        Probability mass function.
    ``logpmf(x, m, n)``
        Log of the probability mass function.
    ``rvs(m, n, size=1, random_state=None)``
        Draw random samples from a multivariate hypergeometric
        distribution.
    ``mean(m, n)``
        Mean of the multivariate hypergeometric distribution.
    ``var(m, n)``
        Variance of the multivariate hypergeometric distribution.
    ``cov(m, n)``
        Compute the covariance matrix of the multivariate
        hypergeometric distribution.

    Parameters
    ----------
    m : array_like
        The number of each type of object in the population.
        That is, :math:`m[i]` is the number of objects of
        type :math:`i`.
    n : array_like
        The number of samples taken from the population.
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional
    
        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

    Notes
    -----
    `m` must be an array of positive integers. If the quantile
    :math:`i` contains values out of the range :math:`[0, m_i]`
    where :math:`m_i` is the number of objects of type :math:`i`
    in the population or if the parameters are inconsistent with one
    another (e.g. ``x.sum() != n``), methods return the appropriate
    value (e.g. ``0`` for ``pmf``). If `m` or `n` contain negative
    values, the result will contain ``nan`` there.

    The probability mass function for `multivariate_hypergeom` is

    .. math::

        P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) = \frac{\binom{m_1}{x_1}
        \binom{m_2}{x_2} \cdots \binom{m_k}{x_k}}{\binom{M}{n}}, \\ \quad
        (x_1, x_2, \ldots, x_k) \in \mathbb{N}^k \text{ with }
        \sum_{i=1}^k x_i = n

    where :math:`m_i` are the number of objects of type :math:`i`, :math:`M`
    is the total number of objects in the population (sum of all the
    :math:`m_i`), and :math:`n` is the size of the sample to be taken
    from the population.

    .. versionadded:: 1.6.0

    Examples
    --------
    To evaluate the probability mass function of the multivariate
    hypergeometric distribution, with a dichotomous population of size
    :math:`10` and :math:`20`, at a sample of size :math:`12` with
    :math:`8` objects of the first type and :math:`4` objects of the
    second type, use:

    >>> from scipy.stats import multivariate_hypergeom
    >>> multivariate_hypergeom.pmf(x=[8, 4], m=[10, 20], n=12)
    0.0025207176631464523

    The `multivariate_hypergeom` distribution is identical to the
    corresponding `hypergeom` distribution (tiny numerical differences
    notwithstanding) when only two types (good and bad) of objects
    are present in the population as in the example above. Consider
    another example for a comparison with the hypergeometric distribution:

    >>> from scipy.stats import hypergeom
    >>> multivariate_hypergeom.pmf(x=[3, 1], m=[10, 5], n=4)
    0.4395604395604395
    >>> hypergeom.pmf(k=3, M=15, n=4, N=10)
    0.43956043956044005

    The functions ``pmf``, ``logpmf``, ``mean``, ``var``, ``cov``, and ``rvs``
    support broadcasting, under the convention that the vector parameters
    (``x``, ``m``, and ``n``) are interpreted as if each row along the last
    axis is a single object. For instance, we can combine the previous two
    calls to `multivariate_hypergeom` as

    >>> multivariate_hypergeom.pmf(x=[[8, 4], [3, 1]], m=[[10, 20], [10, 5]],
    ...                            n=[12, 4])
    array([0.00252072, 0.43956044])

    This broadcasting also works for ``cov``, where the output objects are
    square matrices of size ``m.shape[-1]``. For example:

    >>> multivariate_hypergeom.cov(m=[[7, 9], [10, 15]], n=[8, 12])
    array([[[ 1.05, -1.05],
            [-1.05,  1.05]],
           [[ 1.56, -1.56],
            [-1.56,  1.56]]])

    That is, ``result[0]`` is equal to
    ``multivariate_hypergeom.cov(m=[7, 9], n=8)`` and ``result[1]`` is equal
    to ``multivariate_hypergeom.cov(m=[10, 15], n=12)``.

    Alternatively, the object may be called (as a function) to fix the `m`
    and `n` parameters, returning a "frozen" multivariate hypergeometric
    random variable.

    >>> rv = multivariate_hypergeom(m=[10, 20], n=12)
    >>> rv.pmf(x=[8, 4])
    0.0025207176631464523

    See Also
    --------
    scipy.stats.hypergeom : The hypergeometric distribution.
    scipy.stats.multinomial : The multinomial distribution.

    References
    ----------
    .. [1] The Multivariate Hypergeometric Distribution,
           http://www.randomservices.org/random/urn/MultiHypergeometric.html
    .. [2] Thomas J. Sargent and John Stachurski, 2020,
           Multivariate Hypergeometric Distribution
           https://python.quantecon.org/_downloads/pdf/multi_hyper.pdf