Module « scipy.stats »
Signature de la fonction binomtest
def binomtest(k, n, p=0.5, alternative='two-sided')
Description
binomtest.__doc__
Perform a test that the probability of success is p.
The binomial test [1]_ is a test of the null hypothesis that the
probability of success in a Bernoulli experiment is `p`.
Details of the test can be found in many texts on statistics, such
as section 24.5 of [2]_.
Parameters
----------
k : int
The number of successes.
n : int
The number of trials.
p : float, optional
The hypothesized probability of success, i.e. the expected
proportion of successes. The value must be in the interval
``0 <= p <= 1``. The default value is ``p = 0.5``.
alternative : {'two-sided', 'greater', 'less'}, optional
Indicates the alternative hypothesis. The default value is
'two-sided'.
Returns
-------
result : `~scipy.stats._result_classes.BinomTestResult` instance
The return value is an object with the following attributes:
k : int
The number of successes (copied from `binomtest` input).
n : int
The number of trials (copied from `binomtest` input).
alternative : str
Indicates the alternative hypothesis specified in the input
to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``,
or ``'less'``.
pvalue : float
The p-value of the hypothesis test.
proportion_estimate : float
The estimate of the proportion of successes.
The object has the following methods:
proportion_ci(confidence_level=0.95, method='exact') :
Compute the confidence interval for ``proportion_estimate``.
Notes
-----
.. versionadded:: 1.7.0
References
----------
.. [1] Binomial test, https://en.wikipedia.org/wiki/Binomial_test
.. [2] Jerrold H. Zar, Biostatistical Analysis (fifth edition),
Prentice Hall, Upper Saddle River, New Jersey USA (2010)
Examples
--------
>>> from scipy.stats import binomtest
A car manufacturer claims that no more than 10% of their cars are unsafe.
15 cars are inspected for safety, 3 were found to be unsafe. Test the
manufacturer's claim:
>>> result = binomtest(3, n=15, p=0.1, alternative='greater')
>>> result.pvalue
0.18406106910639114
The null hypothesis cannot be rejected at the 5% level of significance
because the returned p-value is greater than the critical value of 5%.
The estimated proportion is simply ``3/15``:
>>> result.proportion_estimate
0.2
We can use the `proportion_ci()` method of the result to compute the
confidence interval of the estimate:
>>> result.proportion_ci(confidence_level=0.95)
ConfidenceInterval(low=0.05684686759024681, high=1.0)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :