Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction expectile
def expectile(a, alpha=0.5, *, weights=None)
Description
help(scipy.stats.expectile)
Compute the expectile at the specified level.
Expectiles are a generalization of the expectation in the same way as
quantiles are a generalization of the median. The expectile at level
`alpha = 0.5` is the mean (average). See Notes for more details.
Parameters
----------
a : array_like
Array containing numbers whose expectile is desired.
alpha : float, default: 0.5
The level of the expectile; e.g., ``alpha=0.5`` gives the mean.
weights : array_like, optional
An array of weights associated with the values in `a`.
The `weights` must be broadcastable to the same shape as `a`.
Default is None, which gives each value a weight of 1.0.
An integer valued weight element acts like repeating the corresponding
observation in `a` that many times. See Notes for more details.
Returns
-------
expectile : ndarray
The empirical expectile at level `alpha`.
See Also
--------
numpy.mean : Arithmetic average
numpy.quantile : Quantile
Notes
-----
In general, the expectile at level :math:`\alpha` of a random variable
:math:`X` with cumulative distribution function (CDF) :math:`F` is given
by the unique solution :math:`t` of:
.. math::
\alpha E((X - t)_+) = (1 - \alpha) E((t - X)_+) \,.
Here, :math:`(x)_+ = \max(0, x)` is the positive part of :math:`x`.
This equation can be equivalently written as:
.. math::
\alpha \int_t^\infty (x - t)\mathrm{d}F(x)
= (1 - \alpha) \int_{-\infty}^t (t - x)\mathrm{d}F(x) \,.
The empirical expectile at level :math:`\alpha` (`alpha`) of a sample
:math:`a_i` (the array `a`) is defined by plugging in the empirical CDF of
`a`. Given sample or case weights :math:`w` (the array `weights`), it
reads :math:`F_a(x) = \frac{1}{\sum_i w_i} \sum_i w_i 1_{a_i \leq x}`
with indicator function :math:`1_{A}`. This leads to the definition of the
empirical expectile at level `alpha` as the unique solution :math:`t` of:
.. math::
\alpha \sum_{i=1}^n w_i (a_i - t)_+ =
(1 - \alpha) \sum_{i=1}^n w_i (t - a_i)_+ \,.
For :math:`\alpha=0.5`, this simplifies to the weighted average.
Furthermore, the larger :math:`\alpha`, the larger the value of the
expectile.
As a final remark, the expectile at level :math:`\alpha` can also be
written as a minimization problem. One often used choice is
.. math::
\operatorname{argmin}_t
E(\lvert 1_{t\geq X} - \alpha\rvert(t - X)^2) \,.
References
----------
.. [1] W. K. Newey and J. L. Powell (1987), "Asymmetric Least Squares
Estimation and Testing," Econometrica, 55, 819-847.
.. [2] T. Gneiting (2009). "Making and Evaluating Point Forecasts,"
Journal of the American Statistical Association, 106, 746 - 762.
:doi:`10.48550/arXiv.0912.0902`
Examples
--------
>>> import numpy as np
>>> from scipy.stats import expectile
>>> a = [1, 4, 2, -1]
>>> expectile(a, alpha=0.5) == np.mean(a)
True
>>> expectile(a, alpha=0.2)
0.42857142857142855
>>> expectile(a, alpha=0.8)
2.5714285714285716
>>> weights = [1, 3, 1, 1]
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :