Module « scipy.stats »
Signature de la fonction boschloo_exact
def boschloo_exact(table, alternative='two-sided', n=32)
Description
boschloo_exact.__doc__
Perform Boschloo's exact test on a 2x2 contingency table.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses. Default is 'two-sided'.
Please see explanations in the Notes section below.
n : int, optional
Number of sampling points used in the construction of the sampling
method. Note that this argument will automatically be converted to
the next higher power of 2 since `scipy.stats.qmc.Sobol` is used to
select sample points. Default is 32. Must be positive. In most cases,
32 points is enough to reach good precision. More points comes at
performance cost.
Returns
-------
ber : BoschlooExactResult
A result object with the following attributes.
statistic : float
The statistic used in Boschloo's test; that is, the p-value
from Fisher's exact test.
pvalue : float
P-value, the probability of obtaining a distribution at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table.
fisher_exact : Fisher exact test on a 2x2 contingency table.
barnard_exact : Barnard's exact test, which is a more powerful alternative
than Fisher's exact test for 2x2 contingency tables.
Notes
-----
Boschloo's test is an exact test used in the analysis of contingency
tables. It examines the association of two categorical variables, and
is a uniformly more powerful alternative to Fisher's exact test
for 2x2 contingency tables.
Let's define :math:`X_0` a 2x2 matrix representing the observed sample,
where each column stores the binomial experiment, as in the example
below. Let's also define :math:`p_1, p_2` the theoretical binomial
probabilities for :math:`x_{11}` and :math:`x_{12}`. When using
Boschloo exact test, we can assert three different null hypotheses :
- :math:`H_0 : p_1 \geq p_2` versus :math:`H_1 : p_1 < p_2`,
with `alternative` = "less"
- :math:`H_0 : p_1 \leq p_2` versus :math:`H_1 : p_1 > p_2`,
with `alternative` = "greater"
- :math:`H_0 : p_1 = p_2` versus :math:`H_1 : p_1 \neq p_2`,
with `alternative` = "two-sided" (default one)
Boschloo's exact test uses the p-value of Fisher's exact test as a
statistic, and Boschloo's p-value is the probability under the null
hypothesis of observing such an extreme value of this statistic.
Boschloo's and Barnard's are both more powerful than Fisher's exact
test.
.. versionadded:: 1.7.0
References
----------
.. [1] R.D. Boschloo. "Raised conditional level of significance for the
2 x 2-table when testing the equality of two probabilities",
Statistica Neerlandica, 24(1), 1970
.. [2] "Boschloo's test", Wikipedia,
https://en.wikipedia.org/wiki/Boschloo%27s_test
.. [3] Lise M. Saari et al. "Employee attitudes and job satisfaction",
Human Resource Management, 43(4), 395-407, 2004,
:doi:`10.1002/hrm.20032`.
Examples
--------
In the following example, we consider the article "Employee
attitudes and job satisfaction" [3]_
which reports the results of a survey from 63 scientists and 117 college
professors. Of the 63 scientists, 31 said they were very satisfied with
their jobs, whereas 74 of the college professors were very satisfied
with their work. Is this significant evidence that college
professors are happier with their work than scientists?
The following table summarizes the data mentioned above::
college professors scientists
Very Satisfied 74 31
Dissatisfied 43 32
When working with statistical hypothesis testing, we usually use a
threshold probability or significance level upon which we decide
to reject the null hypothesis :math:`H_0`. Suppose we choose the common
significance level of 5%.
Our alternative hypothesis is that college professors are truly more
satisfied with their work than scientists. Therefore, we expect
:math:`p_1` the proportion of very satisfied college professors to be
greater than :math:`p_2`, the proportion of very satisfied scientists.
We thus call `boschloo_exact` with the ``alternative="greater"`` option:
>>> import scipy.stats as stats
>>> res = stats.boschloo_exact([[74, 31], [43, 32]], alternative="greater")
>>> res.statistic
0.0483...
>>> res.pvalue
0.0355...
Under the null hypothesis that scientists are happier in their work than
college professors, the probability of obtaining test
results at least as extreme as the observed data is approximately 3.55%.
Since this p-value is less than our chosen significance level, we have
evidence to reject :math:`H_0` in favor of the alternative hypothesis.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :