Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.stats »

Fonction irwinhall - module scipy.stats

Signature de la fonction irwinhall

def irwinhall(*args, **kwds) 

Description

help(scipy.stats.irwinhall)

An Irwin-Hall (Uniform Sum) continuous random variable.

An `Irwin-Hall <https://en.wikipedia.org/wiki/Irwin-Hall_distribution/>`_
continuous random variable is the sum of :math:`n` independent
standard uniform random variables [1]_ [2]_.

As an instance of the `rv_continuous` class, `irwinhall` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.

Methods
-------
rvs(n, loc=0, scale=1, size=1, random_state=None)
    Random variates.
pdf(x, n, loc=0, scale=1)
    Probability density function.
logpdf(x, n, loc=0, scale=1)
    Log of the probability density function.
cdf(x, n, loc=0, scale=1)
    Cumulative distribution function.
logcdf(x, n, loc=0, scale=1)
    Log of the cumulative distribution function.
sf(x, n, loc=0, scale=1)
    Survival function  (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, n, loc=0, scale=1)
    Log of the survival function.
ppf(q, n, loc=0, scale=1)
    Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, n, loc=0, scale=1)
    Inverse survival function (inverse of ``sf``).
moment(order, n, loc=0, scale=1)
    Non-central moment of the specified order.
stats(n, loc=0, scale=1, moments='mv')
    Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(n, loc=0, scale=1)
    (Differential) entropy of the RV.
fit(data)
    Parameter estimates for generic data.
    See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
    keyword arguments.
expect(func, args=(n,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
    Expected value of a function (of one argument) with respect to the distribution.
median(n, loc=0, scale=1)
    Median of the distribution.
mean(n, loc=0, scale=1)
    Mean of the distribution.
var(n, loc=0, scale=1)
    Variance of the distribution.
std(n, loc=0, scale=1)
    Standard deviation of the distribution.
interval(confidence, n, loc=0, scale=1)
    Confidence interval with equal areas around the median.

Notes
-----
Applications include `Rao's Spacing Test
<https://jammalam.faculty.pstat.ucsb.edu/html/favorite/test.htm>`_,
a more powerful alternative to the Rayleigh test
when the data are not unimodal, and radar [3]_.

Conveniently, the pdf and cdf are the :math:`n`-fold convolution of
the ones for the standard uniform distribution, which is also the
definition of the cardinal B-splines of degree :math:`n-1`
having knots evenly spaced from :math:`1` to :math:`n` [4]_ [5]_.

The Bates distribution, which represents the *mean* of statistically
independent, uniformly distributed random variables, is simply the
Irwin-Hall distribution scaled by :math:`1/n`. For example, the frozen
distribution ``bates = irwinhall(10, scale=1/10)`` represents the
distribution of the mean of 10 uniformly distributed random variables.

The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``irwinhall.pdf(x, n, loc, scale)`` is identically
equivalent to ``irwinhall.pdf(y, n) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.

References
----------
.. [1] P. Hall, "The distribution of means for samples of size N drawn
        from a population in which the variate takes values between 0 and 1,
        all such values being equally probable",
        Biometrika, Volume 19, Issue 3-4, December 1927, Pages 240-244,
        :doi:`10.1093/biomet/19.3-4.240`.
.. [2] J. O. Irwin, "On the frequency distribution of the means of samples
        from a population having any law of frequency with finite moments,
        with special reference to Pearson's Type II,
        Biometrika, Volume 19, Issue 3-4, December 1927, Pages 225-239,
        :doi:`0.1093/biomet/19.3-4.225`.
.. [3] K. Buchanan, T. Adeyemi, C. Flores-Molina, S. Wheeland and D. Overturf, 
        "Sidelobe behavior and bandwidth characteristics
        of distributed antenna arrays,"
        2018 United States National Committee of
        URSI National Radio Science Meeting (USNC-URSI NRSM),
        Boulder, CO, USA, 2018, pp. 1-2.
        https://www.usnc-ursi-archive.org/nrsm/2018/papers/B15-9.pdf.
.. [4] Amos Ron, "Lecture 1: Cardinal B-splines and convolution operators", p. 1
        https://pages.cs.wisc.edu/~deboor/887/lec1new.pdf.
.. [5] Trefethen, N. (2012, July). B-splines and convolution. Chebfun. 
        Retrieved April 30, 2024, from http://www.chebfun.org/examples/approx/BSplineConv.html.

Examples
--------
>>> import numpy as np
>>> from scipy.stats import irwinhall
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

>>> n = 10
>>> mean, var, skew, kurt = irwinhall.stats(n, moments='mvsk')

Display the probability density function (``pdf``):

>>> x = np.linspace(irwinhall.ppf(0.01, n),
...                 irwinhall.ppf(0.99, n), 100)
>>> ax.plot(x, irwinhall.pdf(x, n),
...        'r-', lw=5, alpha=0.6, label='irwinhall pdf')

Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.

Freeze the distribution and display the frozen ``pdf``:

>>> rv = irwinhall(n)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of ``cdf`` and ``ppf``:

>>> vals = irwinhall.ppf([0.001, 0.5, 0.999], n)
>>> np.allclose([0.001, 0.5, 0.999], irwinhall.cdf(vals, n))
True

Generate random numbers:

>>> r = irwinhall.rvs(n, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé