Module « scipy.stats »
Signature de la fonction cramervonmises
def cramervonmises(rvs, cdf, args=())
Description
cramervonmises.__doc__
Perform the one-sample Cramér-von Mises test for goodness of fit.
This performs a test of the goodness of fit of a cumulative distribution
function (cdf) :math:`F` compared to the empirical distribution function
:math:`F_n` of observed random variates :math:`X_1, ..., X_n` that are
assumed to be independent and identically distributed ([1]_).
The null hypothesis is that the :math:`X_i` have cumulative distribution
:math:`F`.
Parameters
----------
rvs : array_like
A 1-D array of observed values of the random variables :math:`X_i`.
cdf : str or callable
The cumulative distribution function :math:`F` to test the
observations against. If a string, it should be the name of a
distribution in `scipy.stats`. If a callable, that callable is used
to calculate the cdf: ``cdf(x, *args) -> float``.
args : tuple, optional
Distribution parameters. These are assumed to be known; see Notes.
Returns
-------
res : object with attributes
statistic : float
Cramér-von Mises statistic.
pvalue : float
The p-value.
See Also
--------
kstest, cramervonmises_2samp
Notes
-----
.. versionadded:: 1.6.0
The p-value relies on the approximation given by equation 1.8 in [2]_.
It is important to keep in mind that the p-value is only accurate if
one tests a simple hypothesis, i.e. the parameters of the reference
distribution are known. If the parameters are estimated from the data
(composite hypothesis), the computed p-value is not reliable.
References
----------
.. [1] Cramér-von Mises criterion, Wikipedia,
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93von_Mises_criterion
.. [2] Csorgo, S. and Faraway, J. (1996). The Exact and Asymptotic
Distribution of Cramér-von Mises Statistics. Journal of the
Royal Statistical Society, pp. 221-234.
Examples
--------
Suppose we wish to test whether data generated by ``scipy.stats.norm.rvs``
were, in fact, drawn from the standard normal distribution. We choose a
significance level of alpha=0.05.
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(size=500, random_state=rng)
>>> res = stats.cramervonmises(x, 'norm')
>>> res.statistic, res.pvalue
(0.49121480855028343, 0.04189256516661377)
The p-value 0.79 exceeds our chosen significance level, so we do not
reject the null hypothesis that the observed sample is drawn from the
standard normal distribution.
Now suppose we wish to check whether the same samples shifted by 2.1 is
consistent with being drawn from a normal distribution with a mean of 2.
>>> y = x + 2.1
>>> res = stats.cramervonmises(y, 'norm', args=(2,))
>>> res.statistic, res.pvalue
(0.07400330012187435, 0.7274595666160468)
Here we have used the `args` keyword to specify the mean (``loc``)
of the normal distribution to test the data against. This is equivalent
to the following, in which we create a frozen normal distribution with
mean 2.1, then pass its ``cdf`` method as an argument.
>>> frozen_dist = stats.norm(loc=2)
>>> res = stats.cramervonmises(y, frozen_dist.cdf)
>>> res.statistic, res.pvalue
(0.07400330012187435, 0.7274595666160468)
In either case, we would reject the null hypothesis that the observed
sample is drawn from a normal distribution with a mean of 2 (and default
variance of 1) because the p-value 0.04 is less than our chosen
significance level.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :