Module « scipy.stats »
Signature de la fonction kstwo
def kstwo(*args, **kwds)
Description
kstwo.__doc__
Kolmogorov-Smirnov two-sided test statistic distribution.
This is the distribution of the two-sided Kolmogorov-Smirnov (KS)
statistic :math:`D_n` for a finite sample size ``n``
(the shape parameter).
As an instance of the `rv_continuous` class, `kstwo` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(n, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, n, loc=0, scale=1)
Probability density function.
logpdf(x, n, loc=0, scale=1)
Log of the probability density function.
cdf(x, n, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, n, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, n, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, n, loc=0, scale=1)
Log of the survival function.
ppf(q, n, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, n, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, n, loc=0, scale=1)
Non-central moment of order n
stats(n, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(n, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(n,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(n, loc=0, scale=1)
Median of the distribution.
mean(n, loc=0, scale=1)
Mean of the distribution.
var(n, loc=0, scale=1)
Variance of the distribution.
std(n, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, n, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
See Also
--------
kstwobign, ksone, kstest
Notes
-----
:math:`D_n` is given by
.. math::
D_n = \text{sup}_x |F_n(x) - F(x)|
where :math:`F` is a (continuous) CDF and :math:`F_n` is an empirical CDF.
`kstwo` describes the distribution under the null hypothesis of the KS test
that the empirical CDF corresponds to :math:`n` i.i.d. random variates
with CDF :math:`F`.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``kstwo.pdf(x, n, loc, scale)`` is identically
equivalent to ``kstwo.pdf(y, n) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
References
----------
.. [1] Simard, R., L'Ecuyer, P. "Computing the Two-Sided
Kolmogorov-Smirnov Distribution", Journal of Statistical Software,
Vol 39, 11, 1-18 (2011).
Examples
--------
>>> from scipy.stats import kstwo
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> n = 10
>>> mean, var, skew, kurt = kstwo.stats(n, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(kstwo.ppf(0.01, n),
... kstwo.ppf(0.99, n), 100)
>>> ax.plot(x, kstwo.pdf(x, n),
... 'r-', lw=5, alpha=0.6, label='kstwo pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = kstwo(n)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = kstwo.ppf([0.001, 0.5, 0.999], n)
>>> np.allclose([0.001, 0.5, 0.999], kstwo.cdf(vals, n))
True
Generate random numbers:
>>> r = kstwo.rvs(n, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :