Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.stats »

Fonction matrix_normal - module scipy.stats

Signature de la fonction matrix_normal

def matrix_normal(mean=None, rowcov=1, colcov=1, seed=None) 

Description

matrix_normal.__doc__

A matrix normal random variable.

    The `mean` keyword specifies the mean. The `rowcov` keyword specifies the
    among-row covariance matrix. The 'colcov' keyword specifies the
    among-column covariance matrix.

    Methods
    -------
    ``pdf(X, mean=None, rowcov=1, colcov=1)``
        Probability density function.
    ``logpdf(X, mean=None, rowcov=1, colcov=1)``
        Log of the probability density function.
    ``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)``
        Draw random samples.

    Parameters
    ----------
    X : array_like
        Quantiles, with the last two axes of `X` denoting the components.
    mean : array_like, optional
        Mean of the distribution (default: `None`)
    rowcov : array_like, optional
        Among-row covariance matrix of the distribution (default: `1`)
    colcov : array_like, optional
        Among-column covariance matrix of the distribution (default: `1`)
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional
    
        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

    Alternatively, the object may be called (as a function) to fix the mean
    and covariance parameters, returning a "frozen" matrix normal
    random variable:

    rv = matrix_normal(mean=None, rowcov=1, colcov=1)
        - Frozen object with the same methods but holding the given
          mean and covariance fixed.

    Notes
    -----
    If `mean` is set to `None` then a matrix of zeros is used for the mean.
        The dimensions of this matrix are inferred from the shape of `rowcov` and
        `colcov`, if these are provided, or set to `1` if ambiguous.
    
        `rowcov` and `colcov` can be two-dimensional array_likes specifying the
        covariance matrices directly. Alternatively, a one-dimensional array will
        be be interpreted as the entries of a diagonal matrix, and a scalar or
        zero-dimensional array will be interpreted as this value times the
        identity matrix.
        

    The covariance matrices specified by `rowcov` and `colcov` must be
    (symmetric) positive definite. If the samples in `X` are
    :math:`m \times n`, then `rowcov` must be :math:`m \times m` and
    `colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`.

    The probability density function for `matrix_normal` is

    .. math::

        f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}}
               \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1}
               (X-M)^T \right] \right),

    where :math:`M` is the mean, :math:`U` the among-row covariance matrix,
    :math:`V` the among-column covariance matrix.

    The `allow_singular` behaviour of the `multivariate_normal`
    distribution is not currently supported. Covariance matrices must be
    full rank.

    The `matrix_normal` distribution is closely related to the
    `multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)`
    (the vector formed by concatenating the columns  of :math:`X`) has a
    multivariate normal distribution with mean :math:`\mathrm{Vec}(M)`
    and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker
    product). Sampling and pdf evaluation are
    :math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but
    :math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal,
    making this equivalent form algorithmically inefficient.

    .. versionadded:: 0.17.0

    Examples
    --------

    >>> from scipy.stats import matrix_normal

    >>> M = np.arange(6).reshape(3,2); M
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> U = np.diag([1,2,3]); U
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3]])
    >>> V = 0.3*np.identity(2); V
    array([[ 0.3,  0. ],
           [ 0. ,  0.3]])
    >>> X = M + 0.1; X
    array([[ 0.1,  1.1],
           [ 2.1,  3.1],
           [ 4.1,  5.1]])
    >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
    0.023410202050005054

    >>> # Equivalent multivariate normal
    >>> from scipy.stats import multivariate_normal
    >>> vectorised_X = X.T.flatten()
    >>> equiv_mean = M.T.flatten()
    >>> equiv_cov = np.kron(V,U)
    >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov)
    0.023410202050005054