Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction kstat
def kstat(data, n=2, *, axis=None, nan_policy='propagate', keepdims=False)
Description
help(scipy.stats.kstat)
Return the `n` th k-statistic ( ``1<=n<=4`` so far).
The `n` th k-statistic ``k_n`` is the unique symmetric unbiased estimator of the
`n` th cumulant :math:`\kappa_n` [1]_ [2]_.
Parameters
----------
data : array_like
Input array.
n : int, {1, 2, 3, 4}, optional
Default is equal to 2.
axis : int or None, default: None
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear in a
corresponding element of the output.
If ``None``, the input will be raveled before computing the statistic.
nan_policy : {'propagate', 'omit', 'raise'}
Defines how to handle input NaNs.
- ``propagate``: if a NaN is present in the axis slice (e.g. row) along
which the statistic is computed, the corresponding entry of the output
will be NaN.
- ``omit``: NaNs will be omitted when performing the calculation.
If insufficient data remains in the axis slice along which the
statistic is computed, the corresponding entry of the output will be
NaN.
- ``raise``: if a NaN is present, a ``ValueError`` will be raised.
keepdims : bool, default: False
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
Returns
-------
kstat : float
The `n` th k-statistic.
See Also
--------
:func:`kstatvar`
Returns an unbiased estimator of the variance of the k-statistic
:func:`moment`
Returns the n-th central moment about the mean for a sample.
Notes
-----
For a sample size :math:`n`, the first few k-statistics are given by
.. math::
k_1 &= \frac{S_1}{n}, \\
k_2 &= \frac{nS_2 - S_1^2}{n(n-1)}, \\
k_3 &= \frac{2S_1^3 - 3nS_1S_2 + n^2S_3}{n(n-1)(n-2)}, \\
k_4 &= \frac{-6S_1^4 + 12nS_1^2S_2 - 3n(n-1)S_2^2 - 4n(n+1)S_1S_3
+ n^2(n+1)S_4}{n (n-1)(n-2)(n-3)},
where
.. math::
S_r \equiv \sum_{i=1}^n X_i^r,
and :math:`X_i` is the :math:`i` th data point.
Beginning in SciPy 1.9, ``np.matrix`` inputs (not recommended for new
code) are converted to ``np.ndarray`` before the calculation is performed. In
this case, the output will be a scalar or ``np.ndarray`` of appropriate shape
rather than a 2D ``np.matrix``. Similarly, while masked elements of masked
arrays are ignored, the output will be a scalar or ``np.ndarray`` rather than a
masked array with ``mask=False``.
References
----------
.. [1] http://mathworld.wolfram.com/k-Statistic.html
.. [2] http://mathworld.wolfram.com/Cumulant.html
Examples
--------
>>> from scipy import stats
>>> from numpy.random import default_rng
>>> rng = default_rng()
As sample size increases, `n`-th moment and `n`-th k-statistic converge to the
same number (although they aren't identical). In the case of the normal
distribution, they converge to zero.
>>> for i in range(2,8):
... x = rng.normal(size=10**i)
... m, k = stats.moment(x, 3), stats.kstat(x, 3)
... print(f"{i=}: {m=:.3g}, {k=:.3g}, {(m-k)=:.3g}")
i=2: m=-0.631, k=-0.651, (m-k)=0.0194 # random
i=3: m=0.0282, k=0.0283, (m-k)=-8.49e-05
i=4: m=-0.0454, k=-0.0454, (m-k)=1.36e-05
i=6: m=7.53e-05, k=7.53e-05, (m-k)=-2.26e-09
i=7: m=0.00166, k=0.00166, (m-k)=-4.99e-09
i=8: m=-2.88e-06 k=-2.88e-06, (m-k)=8.63e-13
Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :