Module « scipy.stats »
Signature de la fonction zipfian
def zipfian(*args, **kwds)
Description
zipfian.__doc__
A Zipfian discrete random variable.
As an instance of the `rv_discrete` class, `zipfian` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(a, n, loc=0, size=1, random_state=None)
Random variates.
pmf(k, a, n, loc=0)
Probability mass function.
logpmf(k, a, n, loc=0)
Log of the probability mass function.
cdf(k, a, n, loc=0)
Cumulative distribution function.
logcdf(k, a, n, loc=0)
Log of the cumulative distribution function.
sf(k, a, n, loc=0)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(k, a, n, loc=0)
Log of the survival function.
ppf(q, a, n, loc=0)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, a, n, loc=0)
Inverse survival function (inverse of ``sf``).
stats(a, n, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(a, n, loc=0)
(Differential) entropy of the RV.
expect(func, args=(a, n), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(a, n, loc=0)
Median of the distribution.
mean(a, n, loc=0)
Mean of the distribution.
var(a, n, loc=0)
Variance of the distribution.
std(a, n, loc=0)
Standard deviation of the distribution.
interval(alpha, a, n, loc=0)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
See Also
--------
zipf
Notes
-----
The probability mass function for `zipfian` is:
.. math::
f(k, a, n) = \frac{1}{H_{n,a} k^a}
for :math:`k \in \{1, 2, \dots, n-1, n\}`, :math:`a \ge 0`,
:math:`n \in \{1, 2, 3, \dots\}`.
`zipfian` takes :math:`a` and :math:`n` as shape parameters.
:math:`H_{n,a}` is the :math:`n`:sup:`th` generalized harmonic
number of order :math:`a`.
The Zipfian distribution reduces to the Zipf (zeta) distribution as
:math:`n \rightarrow \infty`.
The probability mass function above is defined in the "standardized" form.
To shift distribution use the ``loc`` parameter.
Specifically, ``zipfian.pmf(k, a, n, loc)`` is identically
equivalent to ``zipfian.pmf(k - loc, a, n)``.
References
----------
.. [1] "Zipf's Law", Wikipedia, https://en.wikipedia.org/wiki/Zipf's_law
.. [2] Larry Leemis, "Zipf Distribution", Univariate Distribution
Relationships. http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf
Examples
--------
>>> from scipy.stats import zipfian
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> a, n = 1.25, 10
>>> mean, var, skew, kurt = zipfian.stats(a, n, moments='mvsk')
Display the probability mass function (``pmf``):
>>> x = np.arange(zipfian.ppf(0.01, a, n),
... zipfian.ppf(0.99, a, n))
>>> ax.plot(x, zipfian.pmf(x, a, n), 'bo', ms=8, label='zipfian pmf')
>>> ax.vlines(x, 0, zipfian.pmf(x, a, n), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function)
to fix the shape and location. This returns a "frozen" RV object holding
the given parameters fixed.
Freeze the distribution and display the frozen ``pmf``:
>>> rv = zipfian(a, n)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Check accuracy of ``cdf`` and ``ppf``:
>>> prob = zipfian.cdf(x, a, n)
>>> np.allclose(x, zipfian.ppf(prob, a, n))
True
Generate random numbers:
>>> r = zipfian.rvs(a, n, size=1000)
Confirm that `zipfian` reduces to `zipf` for large `n`, `a > 1`.
>>> from scipy.stats import zipf
>>> k = np.arange(11)
>>> np.allclose(zipfian.pmf(k, a=3.5, n=10000000), zipf.pmf(k, a=3.5))
True
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :