Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction percentileofscore
def percentileofscore(a, score, kind='rank', nan_policy='propagate')
Description
help(scipy.stats.percentileofscore)
Compute the percentile rank of a score relative to a list of scores.
A `percentileofscore` of, for example, 80% means that 80% of the
scores in `a` are below the given score. In the case of gaps or
ties, the exact definition depends on the optional keyword, `kind`.
Parameters
----------
a : array_like
A 1-D array to which `score` is compared.
score : array_like
Scores to compute percentiles for.
kind : {'rank', 'weak', 'strict', 'mean'}, optional
Specifies the interpretation of the resulting score.
The following options are available (default is 'rank'):
* 'rank': Average percentage ranking of score. In case of multiple
matches, average the percentage rankings of all matching scores.
* 'weak': This kind corresponds to the definition of a cumulative
distribution function. A percentileofscore of 80% means that 80%
of values are less than or equal to the provided score.
* 'strict': Similar to "weak", except that only values that are
strictly less than the given score are counted.
* 'mean': The average of the "weak" and "strict" scores, often used
in testing. See https://en.wikipedia.org/wiki/Percentile_rank
nan_policy : {'propagate', 'raise', 'omit'}, optional
Specifies how to treat `nan` values in `a`.
The following options are available (default is 'propagate'):
* 'propagate': returns nan (for each value in `score`).
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
pcos : float
Percentile-position of score (0-100) relative to `a`.
See Also
--------
numpy.percentile
scipy.stats.scoreatpercentile, scipy.stats.rankdata
Examples
--------
Three-quarters of the given values lie below a given score:
>>> import numpy as np
>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0
With multiple matches, note how the scores of the two matches, 0.6
and 0.8 respectively, are averaged:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0
Only 2/5 values are strictly less than 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
But 4/5 values are less than or equal to 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
The average between the weak and the strict scores is:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
Score arrays (of any dimensionality) are supported:
>>> stats.percentileofscore([1, 2, 3, 3, 4], [2, 3])
array([40., 70.])
The inputs can be infinite:
>>> stats.percentileofscore([-np.inf, 0, 1, np.inf], [1, 2, np.inf])
array([75., 75., 100.])
If `a` is empty, then the resulting percentiles are all `nan`:
>>> stats.percentileofscore([], [1, 2])
array([nan, nan])
Vous êtes un professionnel et vous avez besoin d'une formation ?
RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :