Module « scipy.stats »
Signature de la fonction vonmises_line
def vonmises_line(*args, **kwds)
Description
vonmises_line.__doc__
A Von Mises continuous random variable.
As an instance of the `rv_continuous` class, `vonmises_line` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(kappa, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, kappa, loc=0, scale=1)
Probability density function.
logpdf(x, kappa, loc=0, scale=1)
Log of the probability density function.
cdf(x, kappa, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, kappa, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, kappa, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, kappa, loc=0, scale=1)
Log of the survival function.
ppf(q, kappa, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, kappa, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, kappa, loc=0, scale=1)
Non-central moment of order n
stats(kappa, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(kappa, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(kappa,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(kappa, loc=0, scale=1)
Median of the distribution.
mean(kappa, loc=0, scale=1)
Mean of the distribution.
var(kappa, loc=0, scale=1)
Variance of the distribution.
std(kappa, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, kappa, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability density function for `vonmises` and `vonmises_line` is:
.. math::
f(x, \kappa) = \frac{ \exp(\kappa \cos(x)) }{ 2 \pi I_0(\kappa) }
for :math:`-\pi \le x \le \pi`, :math:`\kappa > 0`. :math:`I_0` is the
modified Bessel function of order zero (`scipy.special.i0`).
`vonmises` is a circular distribution which does not restrict the
distribution to a fixed interval. Currently, there is no circular
distribution framework in scipy. The ``cdf`` is implemented such that
``cdf(x + 2*np.pi) == cdf(x) + 1``.
`vonmises_line` is the same distribution, defined on :math:`[-\pi, \pi]`
on the real line. This is a regular (i.e. non-circular) distribution.
`vonmises` and `vonmises_line` take ``kappa`` as a shape parameter.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``vonmises_line.pdf(x, kappa, loc, scale)`` is identically
equivalent to ``vonmises_line.pdf(y, kappa) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
Examples
--------
>>> from scipy.stats import vonmises_line
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> kappa = 3.99
>>> mean, var, skew, kurt = vonmises_line.stats(kappa, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(vonmises_line.ppf(0.01, kappa),
... vonmises_line.ppf(0.99, kappa), 100)
>>> ax.plot(x, vonmises_line.pdf(x, kappa),
... 'r-', lw=5, alpha=0.6, label='vonmises_line pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = vonmises_line(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = vonmises_line.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], vonmises_line.cdf(vals, kappa))
True
Generate random numbers:
>>> r = vonmises_line.rvs(kappa, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :