Module « scipy.stats »
Signature de la fonction exponnorm
def exponnorm(*args, **kwds)
Description
exponnorm.__doc__
An exponentially modified Normal continuous random variable.
Also known as the exponentially modified Gaussian distribution [1]_.
As an instance of the `rv_continuous` class, `exponnorm` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(K, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, K, loc=0, scale=1)
Probability density function.
logpdf(x, K, loc=0, scale=1)
Log of the probability density function.
cdf(x, K, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, K, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, K, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, K, loc=0, scale=1)
Log of the survival function.
ppf(q, K, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, K, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, K, loc=0, scale=1)
Non-central moment of order n
stats(K, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(K, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(K,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(K, loc=0, scale=1)
Median of the distribution.
mean(K, loc=0, scale=1)
Mean of the distribution.
var(K, loc=0, scale=1)
Variance of the distribution.
std(K, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, K, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability density function for `exponnorm` is:
.. math::
f(x, K) = \frac{1}{2K} \exp\left(\frac{1}{2 K^2} - x / K \right)
\text{erfc}\left(-\frac{x - 1/K}{\sqrt{2}}\right)
where :math:`x` is a real number and :math:`K > 0`.
It can be thought of as the sum of a standard normal random variable
and an independent exponentially distributed random variable with rate
``1/K``.
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``exponnorm.pdf(x, K, loc, scale)`` is identically
equivalent to ``exponnorm.pdf(y, K) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
An alternative parameterization of this distribution (for example, in
the Wikpedia article [1]_) involves three parameters, :math:`\mu`,
:math:`\lambda` and :math:`\sigma`.
In the present parameterization this corresponds to having ``loc`` and
``scale`` equal to :math:`\mu` and :math:`\sigma`, respectively, and
shape parameter :math:`K = 1/(\sigma\lambda)`.
.. versionadded:: 0.16.0
References
----------
.. [1] Exponentially modified Gaussian distribution, Wikipedia,
https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
Examples
--------
>>> from scipy.stats import exponnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> K = 1.5
>>> mean, var, skew, kurt = exponnorm.stats(K, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(exponnorm.ppf(0.01, K),
... exponnorm.ppf(0.99, K), 100)
>>> ax.plot(x, exponnorm.pdf(x, K),
... 'r-', lw=5, alpha=0.6, label='exponnorm pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = exponnorm(K)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = exponnorm.ppf([0.001, 0.5, 0.999], K)
>>> np.allclose([0.001, 0.5, 0.999], exponnorm.cdf(vals, K))
True
Generate random numbers:
>>> r = exponnorm.rvs(K, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :