Module « scipy.stats »
Signature de la fonction geninvgauss
def geninvgauss(*args, **kwds)
Description
geninvgauss.__doc__
A Generalized Inverse Gaussian continuous random variable.
As an instance of the `rv_continuous` class, `geninvgauss` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(p, b, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, p, b, loc=0, scale=1)
Probability density function.
logpdf(x, p, b, loc=0, scale=1)
Log of the probability density function.
cdf(x, p, b, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, p, b, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, p, b, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, p, b, loc=0, scale=1)
Log of the survival function.
ppf(q, p, b, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, p, b, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, p, b, loc=0, scale=1)
Non-central moment of order n
stats(p, b, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(p, b, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(p, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(p, b, loc=0, scale=1)
Median of the distribution.
mean(p, b, loc=0, scale=1)
Mean of the distribution.
var(p, b, loc=0, scale=1)
Variance of the distribution.
std(p, b, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, p, b, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability density function for `geninvgauss` is:
.. math::
f(x, p, b) = x^{p-1} \exp(-b (x + 1/x) / 2) / (2 K_p(b))
where `x > 0`, and the parameters `p, b` satisfy `b > 0` ([1]_).
:math:`K_p` is the modified Bessel function of second kind of order `p`
(`scipy.special.kv`).
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``geninvgauss.pdf(x, p, b, loc, scale)`` is identically
equivalent to ``geninvgauss.pdf(y, p, b) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
The inverse Gaussian distribution `stats.invgauss(mu)` is a special case of
`geninvgauss` with `p = -1/2`, `b = 1 / mu` and `scale = mu`.
Generating random variates is challenging for this distribution. The
implementation is based on [2]_.
References
----------
.. [1] O. Barndorff-Nielsen, P. Blaesild, C. Halgreen, "First hitting time
models for the generalized inverse gaussian distribution",
Stochastic Processes and their Applications 7, pp. 49--54, 1978.
.. [2] W. Hoermann and J. Leydold, "Generating generalized inverse Gaussian
random variates", Statistics and Computing, 24(4), p. 547--557, 2014.
Examples
--------
>>> from scipy.stats import geninvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> p, b = 2.3, 1.5
>>> mean, var, skew, kurt = geninvgauss.stats(p, b, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(geninvgauss.ppf(0.01, p, b),
... geninvgauss.ppf(0.99, p, b), 100)
>>> ax.plot(x, geninvgauss.pdf(x, p, b),
... 'r-', lw=5, alpha=0.6, label='geninvgauss pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = geninvgauss(p, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = geninvgauss.ppf([0.001, 0.5, 0.999], p, b)
>>> np.allclose([0.001, 0.5, 0.999], geninvgauss.cdf(vals, p, b))
True
Generate random numbers:
>>> r = geninvgauss.rvs(p, b, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :