Module « scipy.stats »
Signature de la fonction multivariate_t
def multivariate_t(loc=None, shape=1, df=1, allow_singular=False, seed=None)
Description
multivariate_t.__doc__
A multivariate t-distributed random variable.
The `loc` parameter specifies the location. The `shape` parameter specifies
the positive semidefinite shape matrix. The `df` parameter specifies the
degrees of freedom.
In addition to calling the methods below, the object itself may be called
as a function to fix the location, shape matrix, and degrees of freedom
parameters, returning a "frozen" multivariate t-distribution random.
Methods
-------
``pdf(x, loc=None, shape=1, df=1, allow_singular=False)``
Probability density function.
``logpdf(x, loc=None, shape=1, df=1, allow_singular=False)``
Log of the probability density function.
``rvs(loc=None, shape=1, df=1, size=1, random_state=None)``
Draw random samples from a multivariate t-distribution.
Parameters
----------
x : array_like
Quantiles, with the last axis of `x` denoting the components.
loc : array_like, optional
Location of the distribution. (default ``0``)
shape : array_like, optional
Positive semidefinite matrix of the distribution. (default ``1``)
df : float, optional
Degrees of freedom of the distribution; must be greater than zero.
If ``np.inf`` then results are multivariate normal. The default is ``1``.
allow_singular : bool, optional
Whether to allow a singular matrix. (default ``False``)
random_state : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
Notes
-----
Setting the parameter `loc` to ``None`` is equivalent to having `loc`
be the zero-vector. The parameter `shape` can be a scalar, in which case
the shape matrix is the identity times that value, a vector of
diagonal entries for the shape matrix, or a two-dimensional array_like.
The matrix `shape` must be a (symmetric) positive semidefinite matrix. The
determinant and inverse of `shape` are computed as the pseudo-determinant
and pseudo-inverse, respectively, so that `shape` does not need to have
full rank.
The probability density function for `multivariate_t` is
.. math::
f(x) = \frac{\Gamma(\nu + p)/2}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}|\Sigma|^{1/2}}
\exp\left[1 + \frac{1}{\nu} (\mathbf{x} - \boldsymbol{\mu})^{\top}
\boldsymbol{\Sigma}^{-1}
(\mathbf{x} - \boldsymbol{\mu}) \right]^{-(\nu + p)/2},
where :math:`p` is the dimension of :math:`\mathbf{x}`,
:math:`\boldsymbol{\mu}` is the :math:`p`-dimensional location,
:math:`\boldsymbol{\Sigma}` the :math:`p \times p`-dimensional shape
matrix, and :math:`\nu` is the degrees of freedom.
.. versionadded:: 1.6.0
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import multivariate_t
>>> x, y = np.mgrid[-1:3:.01, -2:1.5:.01]
>>> pos = np.dstack((x, y))
>>> rv = multivariate_t([1.0, -0.5], [[2.1, 0.3], [0.3, 1.5]], df=2)
>>> fig, ax = plt.subplots(1, 1)
>>> ax.set_aspect('equal')
>>> plt.contourf(x, y, rv.pdf(pos))
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :