Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »

Fonction normal_inverse_gamma - module scipy.stats

Signature de la fonction normal_inverse_gamma

def normal_inverse_gamma(mu=0, lmbda=1, a=1, b=1, seed=None) 

Description

help(scipy.stats.normal_inverse_gamma)

Normal-inverse-gamma distribution.

The normal-inverse-gamma distribution is the conjugate prior of a normal
distribution with unknown mean and variance.

Methods
-------
pdf(x, s2, mu=0, lmbda=1, a=1, b=1)
    Probability density function.
logpdf(x, s2, mu=0, lmbda=1, a=1, b=1)
    Log of the probability density function.
mean(mu=0, lmbda=1, a=1, b=1)
    Distribution mean.
var(mu=0, lmbda=1, a=1, b=1)
    Distribution variance.
rvs(mu=0, lmbda=1, a=1, b=1, size=None, random_state=None)
    Draw random samples.

Parameters
----------
mu, lmbda, a, b  : array_like
    Shape parameters of the distribution. See notes.
seed : {None, int, np.random.RandomState, np.random.Generator}, optional
    Used for drawing random variates.
    If `seed` is `None`, the `~np.random.RandomState` singleton is used.
    If `seed` is an int, a new ``RandomState`` instance is used, seeded
    with seed.
    If `seed` is already a ``RandomState`` or ``Generator`` instance,
    then that object is used.
    Default is `None`.

See Also
--------
norm
invgamma

Notes
-----

The probability density function of `normal_inverse_gamma` is:

.. math::

    f(x, \sigma^2; \mu, \lambda, \alpha, \beta) =
        \frac{\sqrt{\lambda}}{\sqrt{2 \pi \sigma^2}}
        \frac{\beta^\alpha}{\Gamma(\alpha)}
        \left( \frac{1}{\sigma^2} \right)^{\alpha + 1}
        \exp \left(- \frac{2 \beta + \lambda (x - \mu)^2} {2 \sigma^2} \right)

where all parameters are real and finite, and :math:`\sigma^2 > 0`,
:math:`\lambda > 0`, :math:`\alpha > 0`, and :math:`\beta > 0`.

Methods ``normal_inverse_gamma.pdf`` and ``normal_inverse_gamma.logpdf``
accept `x` and `s2` for arguments :math:`x` and :math:`\sigma^2`.
All methods accept `mu`, `lmbda`, `a`, and `b` for shape parameters
:math:`\mu`, :math:`\lambda`, :math:`\alpha`, and :math:`\beta`,
respectively.

.. versionadded:: 1.15

References
----------
.. [1] Normal-inverse-gamma distribution, Wikipedia,
       https://en.wikipedia.org/wiki/Normal-inverse-gamma_distribution

Examples
--------
Suppose we wish to investigate the relationship between the
normal-inverse-gamma distribution and the inverse gamma distribution.

>>> import numpy as np
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng(527484872345)
>>> mu, lmbda, a, b = 0, 1, 20, 20
>>> norm_inv_gamma = stats.normal_inverse_gamma(mu, lmbda, a, b)
>>> inv_gamma = stats.invgamma(a, scale=b)

One approach is to compare the distribution of the `s2` elements of
random variates against the PDF of an inverse gamma distribution.

>>> _, s2 = norm_inv_gamma.rvs(size=10000, random_state=rng)
>>> bins = np.linspace(s2.min(), s2.max(), 50)
>>> plt.hist(s2, bins=bins, density=True, label='Frequency density')
>>> s2 = np.linspace(s2.min(), s2.max(), 300)
>>> plt.plot(s2, inv_gamma.pdf(s2), label='PDF')
>>> plt.xlabel(r'$\sigma^2$')
>>> plt.ylabel('Frequency density / PMF')
>>> plt.show()

Similarly, we can compare the marginal distribution of `s2` against
an inverse gamma distribution.

>>> from scipy.integrate import quad_vec
>>> from scipy import integrate
>>> s2 = np.linspace(0.5, 3, 6)
>>> res = quad_vec(lambda x: norm_inv_gamma.pdf(x, s2), -np.inf, np.inf)[0]
>>> np.allclose(res, inv_gamma.pdf(s2))
True

The sample mean is comparable to the mean of the distribution.

>>> x, s2 = norm_inv_gamma.rvs(size=10000, random_state=rng)
>>> x.mean(), s2.mean()
(np.float64(-0.005254750127304425), np.float64(1.050438111436508))
>>> norm_inv_gamma.mean()
(np.float64(0.0), np.float64(1.0526315789473684))

Similarly, for the variance:

>>> x.var(ddof=1), s2.var(ddof=1)
(np.float64(1.0546150578185023), np.float64(0.061829865266330754))
>>> norm_inv_gamma.var()
(np.float64(1.0526315789473684), np.float64(0.061557402277623886))



Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé