Module « scipy.stats »
Signature de la fonction betabinom
def betabinom(*args, **kwds)
Description
betabinom.__doc__
A beta-binomial discrete random variable.
As an instance of the `rv_discrete` class, `betabinom` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(n, a, b, loc=0, size=1, random_state=None)
Random variates.
pmf(k, n, a, b, loc=0)
Probability mass function.
logpmf(k, n, a, b, loc=0)
Log of the probability mass function.
cdf(k, n, a, b, loc=0)
Cumulative distribution function.
logcdf(k, n, a, b, loc=0)
Log of the cumulative distribution function.
sf(k, n, a, b, loc=0)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(k, n, a, b, loc=0)
Log of the survival function.
ppf(q, n, a, b, loc=0)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, n, a, b, loc=0)
Inverse survival function (inverse of ``sf``).
stats(n, a, b, loc=0, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(n, a, b, loc=0)
(Differential) entropy of the RV.
expect(func, args=(n, a, b), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(n, a, b, loc=0)
Median of the distribution.
mean(n, a, b, loc=0)
Mean of the distribution.
var(n, a, b, loc=0)
Variance of the distribution.
std(n, a, b, loc=0)
Standard deviation of the distribution.
interval(alpha, n, a, b, loc=0)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The beta-binomial distribution is a binomial distribution with a
probability of success `p` that follows a beta distribution.
The probability mass function for `betabinom` is:
.. math::
f(k) = \binom{n}{k} \frac{B(k + a, n - k + b)}{B(a, b)}
for :math:`k \in \{0, 1, \dots, n\}`, :math:`n \geq 0`, :math:`a > 0`,
:math:`b > 0`, where :math:`B(a, b)` is the beta function.
`betabinom` takes :math:`n`, :math:`a`, and :math:`b` as shape parameters.
References
----------
.. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution
The probability mass function above is defined in the "standardized" form.
To shift distribution use the ``loc`` parameter.
Specifically, ``betabinom.pmf(k, n, a, b, loc)`` is identically
equivalent to ``betabinom.pmf(k - loc, n, a, b)``.
.. versionadded:: 1.4.0
See Also
--------
beta, binom
Examples
--------
>>> from scipy.stats import betabinom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> n, a, b = 5, 2.3, 0.63
>>> mean, var, skew, kurt = betabinom.stats(n, a, b, moments='mvsk')
Display the probability mass function (``pmf``):
>>> x = np.arange(betabinom.ppf(0.01, n, a, b),
... betabinom.ppf(0.99, n, a, b))
>>> ax.plot(x, betabinom.pmf(x, n, a, b), 'bo', ms=8, label='betabinom pmf')
>>> ax.vlines(x, 0, betabinom.pmf(x, n, a, b), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function)
to fix the shape and location. This returns a "frozen" RV object holding
the given parameters fixed.
Freeze the distribution and display the frozen ``pmf``:
>>> rv = betabinom(n, a, b)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Check accuracy of ``cdf`` and ``ppf``:
>>> prob = betabinom.cdf(x, n, a, b)
>>> np.allclose(x, betabinom.ppf(prob, n, a, b))
True
Generate random numbers:
>>> r = betabinom.rvs(n, a, b, size=1000)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :