Module « scipy.stats »
Signature de la fonction norminvgauss
def norminvgauss(*args, **kwds)
Description
norminvgauss.__doc__
A Normal Inverse Gaussian continuous random variable.
As an instance of the `rv_continuous` class, `norminvgauss` object inherits from it
a collection of generic methods (see below for the full list),
and completes them with details specific for this particular distribution.
Methods
-------
rvs(a, b, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, a, b, loc=0, scale=1)
Probability density function.
logpdf(x, a, b, loc=0, scale=1)
Log of the probability density function.
cdf(x, a, b, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1)
Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1)
Log of the survival function.
ppf(q, a, b, loc=0, scale=1)
Percent point function (inverse of ``cdf`` --- percentiles).
isf(q, a, b, loc=0, scale=1)
Inverse survival function (inverse of ``sf``).
moment(n, a, b, loc=0, scale=1)
Non-central moment of order n
stats(a, b, loc=0, scale=1, moments='mv')
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(a, b, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data.
See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the
keyword arguments.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(a, b, loc=0, scale=1)
Median of the distribution.
mean(a, b, loc=0, scale=1)
Mean of the distribution.
var(a, b, loc=0, scale=1)
Variance of the distribution.
std(a, b, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the
distribution
Notes
-----
The probability density function for `norminvgauss` is:
.. math::
f(x, a, b) = \frac{a \, K_1(a \sqrt{1 + x^2})}{\pi \sqrt{1 + x^2}} \,
\exp(\sqrt{a^2 - b^2} + b x)
where :math:`x` is a real number, the parameter :math:`a` is the tail
heaviness and :math:`b` is the asymmetry parameter satisfying
:math:`a > 0` and :math:`|b| <= a`.
:math:`K_1` is the modified Bessel function of second kind
(`scipy.special.k1`).
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the ``loc`` and ``scale`` parameters.
Specifically, ``norminvgauss.pdf(x, a, b, loc, scale)`` is identically
equivalent to ``norminvgauss.pdf(y, a, b) / scale`` with
``y = (x - loc) / scale``. Note that shifting the location of a distribution
does not make it a "noncentral" distribution; noncentral generalizations of
some distributions are available in separate classes.
A normal inverse Gaussian random variable `Y` with parameters `a` and `b`
can be expressed as a normal mean-variance mixture:
`Y = b * V + sqrt(V) * X` where `X` is `norm(0,1)` and `V` is
`invgauss(mu=1/sqrt(a**2 - b**2))`. This representation is used
to generate random variates.
References
----------
O. Barndorff-Nielsen, "Hyperbolic Distributions and Distributions on
Hyperbolae", Scandinavian Journal of Statistics, Vol. 5(3),
pp. 151-157, 1978.
O. Barndorff-Nielsen, "Normal Inverse Gaussian Distributions and Stochastic
Volatility Modelling", Scandinavian Journal of Statistics, Vol. 24,
pp. 1-13, 1997.
Examples
--------
>>> from scipy.stats import norminvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> a, b = 1.25, 0.5
>>> mean, var, skew, kurt = norminvgauss.stats(a, b, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(norminvgauss.ppf(0.01, a, b),
... norminvgauss.ppf(0.99, a, b), 100)
>>> ax.plot(x, norminvgauss.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='norminvgauss pdf')
Alternatively, the distribution object can be called (as a function)
to fix the shape, location and scale parameters. This returns a "frozen"
RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = norminvgauss(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = norminvgauss.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], norminvgauss.cdf(vals, a, b))
True
Generate random numbers:
>>> r = norminvgauss.rvs(a, b, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :