Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.stats »
Signature de la fonction iqr
def iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate', interpolation='linear', keepdims=False)
Description
help(scipy.stats.iqr)
Compute the interquartile range of the data along the specified axis.
The interquartile range (IQR) is the difference between the 75th and
25th percentile of the data. It is a measure of the dispersion
similar to standard deviation or variance, but is much more robust
against outliers [2]_.
The ``rng`` parameter allows this function to compute other
percentile ranges than the actual IQR. For example, setting
``rng=(0, 100)`` is equivalent to `numpy.ptp`.
The IQR of an empty array is `np.nan`.
.. versionadded:: 0.18.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or None, default: None
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear in a
corresponding element of the output.
If ``None``, the input will be raveled before computing the statistic.
rng : Two-element sequence containing floats in range of [0,100] optional
Percentiles over which to compute the range. Each must be
between 0 and 100, inclusive. The default is the true IQR:
``(25, 75)``. The order of the elements is not important.
scale : scalar or str or array_like of reals, optional
The numerical value of scale will be divided out of the final
result. The following string value is also recognized:
* 'normal' : Scale by
:math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`.
The default is 1.0.
Array-like `scale` of real dtype is also allowed, as long
as it broadcasts correctly to the output such that
``out / scale`` is a valid operation. The output dimensions
depend on the input array, `x`, the `axis` argument, and the
`keepdims` flag.
nan_policy : {'propagate', 'omit', 'raise'}
Defines how to handle input NaNs.
- ``propagate``: if a NaN is present in the axis slice (e.g. row) along
which the statistic is computed, the corresponding entry of the output
will be NaN.
- ``omit``: NaNs will be omitted when performing the calculation.
If insufficient data remains in the axis slice along which the
statistic is computed, the corresponding entry of the output will be
NaN.
- ``raise``: if a NaN is present, a ``ValueError`` will be raised.
interpolation : str, optional
Specifies the interpolation method to use when the percentile
boundaries lie between two data points ``i`` and ``j``.
The following options are available (default is 'linear'):
* 'linear': ``i + (j - i)*fraction``, where ``fraction`` is the
fractional part of the index surrounded by ``i`` and ``j``.
* 'lower': ``i``.
* 'higher': ``j``.
* 'nearest': ``i`` or ``j`` whichever is nearest.
* 'midpoint': ``(i + j)/2``.
For NumPy >= 1.22.0, the additional options provided by the ``method``
keyword of `numpy.percentile` are also valid.
keepdims : bool, default: False
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
Returns
-------
iqr : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
:func:`numpy.std`, :func:`numpy.var`
..
Notes
-----
Beginning in SciPy 1.9, ``np.matrix`` inputs (not recommended for new
code) are converted to ``np.ndarray`` before the calculation is performed. In
this case, the output will be a scalar or ``np.ndarray`` of appropriate shape
rather than a 2D ``np.matrix``. Similarly, while masked elements of masked
arrays are ignored, the output will be a scalar or ``np.ndarray`` rather than a
masked array with ``mask=False``.
References
----------
.. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
.. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
.. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
Examples
--------
>>> import numpy as np
>>> from scipy.stats import iqr
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> iqr(x)
4.0
>>> iqr(x, axis=0)
array([ 3.5, 2.5, 1.5])
>>> iqr(x, axis=1)
array([ 3., 1.])
>>> iqr(x, axis=1, keepdims=True)
array([[ 3.],
[ 1.]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :